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Human behavior and disease dynamics
Carl T. Bergstroma,1 ID and William P. Hanageb

We tend to think of epidemics as beginning slowly, ac-
celerating to a peak, and then falling off in intensity.
This pattern is commonly observed for a wide range of
diseases both human and animal and has even motivated
an empirical formulation, known as Farr’s law, for the
shape of epidemic trajectories (1, 2). Loosely speaking,
the law states that what goes up must come down—
and will do so somewhat symmetrically. Such a pattern
emerges directly from the susceptible–infected–removed
(SIR) models often used to describe disease dynamics.
While extremely simple, the SIR model does a good job
capturing the shapes of epidemic curves for a range of
different infectious agents (Fig. 1 A–E). But the COVID-
19 pandemic followed a very different trajectory (Fig. 1F ).
In between multiple waves of infection, we saw lengthy
plateaus. This cannot happen in conventional SIR models,
in which cases are either increasing because enough people
are susceptible, or decreasing because enough people
are immune. Why was the COVID-19 pandemic different?
In their paper, “Dynamics in a behavioral–epidemiological
model for individual adherence to a nonpharmaceutical
intervention,” Saad-Roy and Traulsen explore one reason,
which the classical SIR framework ignores: Humans change
their behavior during epidemics to avoid infection (3).

In the SIR model, the only reason that case counts peak
and decline is that the pathogen runs out of people to
infect. In reality, there is almost always something else
going on alongside immunity. Fig. 1A shows plague death
data from Bombay that were used to illustrate the original
development of the SIR model (4); in reality, seasonality
likely played an important role (5). The H1N1 “swine flu”
pandemic of 2009 was similar. As the days lengthened the
known seasonal factors that impede influenza transmission,
heat and humidity among them worked together with
the accumulated immunity in the population (Fig. 1B). We
see this clearly when comparing epidemic curves in the
southern hemisphere, where most countries experienced a
single winter peak around July 2009, with the northern hemi-
sphere, where two separate peaks were observed in spring
and fall (6). For West Nile virus, seasonality of the mosquito
vector is critical in shaping the epidemic trajectory (Fig. 1C).

Interventions can also play an important role, and they
need not be based on vaccination or other pharmaceuticals.
During the 2001 foot-and-mouth disease outbreak among
livestock in the United Kingdom (Fig. 1D), a controversial con-
tiguous cull strategy was employed to reduce the number of
onward transmission events to new farms before they could
be infected. As another example, behavioral changes among
affected populations, in concert with testing and alongside
vaccination, brought the 2022 Mpox outbreak under control
(Fig. 1E).

The math of the simple SIR model combines the rate
of encounters among infected and infectable people and

the probability of transmission between them into a single
parameter. From this, we can see that there is more than
one way to slow infections. Either reducing the numbers
of contacts or probability of transmission will reduce the
rate at which the outbreak spreads. We do this with “non-
pharmaceutical interventions” or NPIs. For example, NPIs
like school closures and event cancellations reduce contact
rates, whereas masks and air filtration reduce transmission
when contact does occur.

However, NPIs will only work so long as they are used and
nothing else changes. Human behavior can vary depending
on the prevalence of disease and the perception of risk. A
frightened public might take extraordinary precautions, but
over time, as fatigue sets in, people may lose enthusiasm
for voluntary actions to limit disease exposure and become
reluctant to comply with policies such as stay-at-home
orders, mask mandates, or school closures.

Saad-Roy and Traulsen capture this process mathemat-
ically with what they describe as a socio-epidemiological
model. They couple a simple model of human behavior—
the replicator equation as a model of social learning—to the
usual SIR-type differential equations. This explicitly captures
an important feedback process: the prevalence of disease
influences human behavior, which in turn feeds back to
shape the prevalence of disease. This framework readily
captures those long flat periods in between COVID surges.

Predicting epidemic trajectories is difficult (10), especially
because people are harder to predict than viruses. We lack
adequate models to describe how people behave during
pandemics. We do not understand how behavior would
change over time even in an idealized situation where
people have accurate information about the real risk of
disease, let alone what happens when people form their
beliefs and opinions through interactions with the complex
and politicized information environments that character-
ize contemporary society (11). To be clear, Saad-Roy and
Traulsen are not aiming to provide such a model here.
Instead they draw attention to the interactions between
behavior and disease spread, using for illustration a simple
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Fig. 1. Epidemic curves for six disease outbreaks. Even when assessed at different levels of granularity, most (A–E) share a common form. The COVID-19
pandemic (F ) had a very different trajectory. (A) Plague deaths in Bombay 1905 to 1906, from ref. 7, as used in the 1927 paper that introduced SIR modeling
(4). (B) Swine Flu cases in Australia, 2009. Data extracted from figure 4 in ref. 8. (C) Premises with livestock infected with foot and mouth disease in Cumbria,
2001, rolling 7-d average from ref. 9. (D) Human cases of West Nile Virus in Texas May to December 2015, data from Texas Department of State Health Services.
(E) Mpox cases in the USA, May 10 to December 31, 2022, data from CDC. (F ) COVID-19 in the USA 2020 to 2021, rolling 7-d average with data from the World
Health Organization.

model of reasonable ways in which people might adhere
to NPIs under various circumstances. Their sometimes
counterintuitive results illustrate the urgent need for better
models of behavioral responses during pandemics.

One surprising outcome of the Saad-Roy and Traulsen
model is that under some circumstances, mandating a new
NPI has no effect on disease prevalence. The basic logic
is that when a mandate is instituted, disease prevalence
drops, and people compensate by decreasing their use of
other non-mandated NPIs. This result provides an impor-
tant cautionary lesson: public health interventions, even
effective ones, can influence human behavior in ways that
modulate and reduce their overall impact. As a familiar
example, consider how public awareness of polio, measles,

and other childhood diseases has fallen as vaccination has
successfully mitigated their threat.

The value of this model derives from how it quantitatively
captures that intuition, not in any capacity for predicting
the consequences of real-world interventions. Saad-Roy and
Traulsen find that in their model this buffering effect exactly
cancels out the effect of an NPI mandate, but that result
should not be seen as a general principle of infectious
disease epidemiology, but a result of the model structure.
While the model assumes that individual behavior con-
verges to an optimal response, the dramatic regional, racial,
and socioeconomic variation in individual attitudes and
responses to the recent COVID-19 pandemic (12) remind
us that the situation is far more complicated.

2 of 3 https://doi.org/10.1073/pnas.2317211120 pnas.org
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While the model assumes simple learning dynamics for
behavior, in practice there will be a gulf between what
people might wish they could do and what they will have
to do to get by. Exhortations and mandates are of little use
if people lack the means to comply. Access to resources
such as masks and rapid tests, and paid sick leave to
prevent infections in the work place for those occupations
deemed essential—such are means to improve the uptake
and effectiveness of NPIs.

Moreover, this model assumes a homogeneous pop-
ulation with respect to risks from disease and the cost
of interventions. In the case of COVID-19, older people
are far more likely to be seriously ill (13) and so may
behave differently. Imagine an intervention that reduces,
but does not eliminate, the chance that a person will
transmit infection or acquire it if they are exposed. The
impact on infection rates will accumulate in a non-linear
fashion as more people use the NPI (see e.g. ref. 14).
Yet if those at lower risk of severe illness drop the in-
tervention, the force of infection in the community will
increase, and vulnerable individuals will be more likely to be
exposed.

The impacts of NPIs do not evaporate with vacci-
nation. And Saad-Roy and Traulsen show NPIs remain
particularly valuable in concert with vaccination when
transmission rates are high. As usual, these results de-
pend on our assumptions about how effective or other-
wise the vaccines will be, and how enthusiastically peo-
ple adhere to NPIs. Moreover, vaccination is added to
the model at birth and at random—neither of which

are how vaccines are likely to be used in any actual
pandemic.

Returning the shapes of epidemic curves with which we
began this perspective, there is a reason epidemiologists
have been taught about Farr’s law for more than a century.
Yet we need more that empirical generalizations about the
shape of epidemic trajectories, especially during a pandemic
in which vast numbers of people are at risk. Most of us
recognize that attempts to predict the course of the recent
pandemic by fitting early trajectories in one location to
empirically observed disease trajectories elsewhere had to
be updated, revised, and retrofit time and again to account
for the changing epidemiological reality—or simply met with
dismal failure, according to taste.

An SIR model is only one way of producing a bell-shaped
curve, and as shown in Fig. 1 the processes driving
SIR dynamics rarely operate in isolation. Saad-Roy and
Traulsen’s framework moves us toward a reckoning with
the crooked timber of humanity. They persuasively demon-
strate that human behavior will influence the equilibrium
numbers of people infected in a pandemic. While few
epidemiologists would disagree, it is imperative that we

“Saad-Roy and Traulsen’s framework moves us towards
a reckoning with the crooked timber of humanity. They
persuasively demonstrate that human behavior will
influence the equilibrium numbers of people infected
in a pandemic.”

develop quantitative methods to account
for such effects and how humans actually
do behave, which is rarely optimal. At
the same time, we need to think beyond
equilibrium dynamics. Pandemics are by
definition out-of-equilibrium phenomena,
as are shifting human beliefs. A key
challenge for predictive modeling in
infectious disease epidemiology is to

help us navigate outbreaks better. Even if an endemic
equilibrium is where we are destined to arrive, it very much
matters how we get there because some trajectories take
a far greater toll along the way (15). Saad-Roy and Traulsen
provide an important step in the right direction.
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