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In this article, we show how the Eigenfactor score, origi-
nally designed for ranking scholarly journals, can be
adapted to rank the scholarly output of authors, institu-
tions, and countries based on author-level citation data.
Using the methods described in this article, we provide
Eigenfactor rankings for 84,808 disambiguated authors
of 240,804 papers in the Social Science Research
Network (SSRN)—a preprint and postprint archive
devoted to the rapid dissemination of scholarly research
in the social sciences and humanities. As an additive
metric, the Eigenfactor scores are readily computed for
collectives such as departments or institutions as well.
We show that a collective’s Eigenfactor score can be
computed either by summing the Eigenfactor scores of
its members or by working directly with a collective-
level cross-citation matrix. We provide Eigenfactor
rankings for institutions and countries in the SSRN
repository. With a network-wide comparison of Eigen-
factor scores and download tallies, we demonstrate that
Eigenfactor scores provide information that is both dif-
ferent from and complementary to that provided by
download counts. We see author-level ranking as one
filter for navigating the scholarly literature, and note
that such rankings generate incentives for more open
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scholarship, because authors are rewarded for making
their work available to the community as early as pos-
sible and before formal publication.

Introduction

Since 1927, when two chemistry professors proposed
using citation counts to make subscription decisions for
university libraries (Gross & Gross, 1927), citation tallies
have been used to estimate the academic influence and
prestige of articles (Walker, Xie, Yan, & Maslov, 2007),
authors (Hirsch, 2005), journals (Garfield, 1972), depart-
ments (Kalaitzidakis, Mamuneas, & Stengos, 2003), univer-
sities (Liu & Cheng, 2005), and even nations (May, 1997).
But citations are not independent and isolated events. Rather,
they form a network of interrelations among scholarly articles
(de Solla Price, 1965). The structure of this network reflects
millions of individual decisions by academic researchers
about which papers are most important and relevant to their
own work. In our efforts to extract the wealth of information
from this network of citations, we can do better than simply
tallying the raw number of citations; we can explicitly use
information about the network structure to reveal the impor-
tance of each node (paper, author, journal, or institution)
within the citation network as a whole.
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TABLE 1. The 15 different disciplines represented in the Social Science
Research Network.

Research network No. of papers

Accounting research 18,184
Cognitive science 6,202
Corporate governance 15,207
Economics research 260,198
Entrepreneurship research and policy 20,876
Financial economics 97,981
Health economics 5,664
Information systems and ebusiness 12,335

Innovation research and policy 1,433

Legal scholarship 134,691
Management research 47314
Political science 44,941
Social insurance research 5,259
Sustainability research and policy 3,639
Humanities 24,385

Note. Paper counts are as of July 2012.

In this article, we develop an author-level Eigenfactor'
score as a network-based measure of an author’s influence
within the Social Science Research Network (SSRN?). The
SSRN corpus was selected as our data source because we
were able to successfully disambiguate all authors in this
community’ and because we successfully dealt with the
version challenge.* At the time the data for this article were
extracted from SSRN, this scholarly community consisted
of 265,253 paper groups from 126,456 authors who either
cited or received citations from other SSRN authors.” We
then use author-level Eigenfactor scores to rank authors, as
well as institutions and countries associated with this set of
scholars.

Methods
The Citation Network

The SSRN archive comprises 265,253 papers represent-
ing 126,456 unique authors across a number of disciplines in
the social sciences and humanities, with particular focus in
economics, law, and business (Table 1). For each paper, we
extract the authors and their primary institutional affilia-
tions, and the works cited in the article’s references and
footnotes. This includes 5,567,472 references. These refer-
ences in each paper in the SSRN database can then be used
to create large networks where the links represent references
to other SSRN papers or citations from other SSRN papers;
the nodes can represent either papers, authors, or institu-
tions. For this study, the nodes are authors, and the links are
citations between authors.

The authors in the SSRN that we examined constitute a
subset of the total number of authors. Authors with only
abstracts were not included. For an author to be included in
the network, he or she had to have at least one paper with a
full-text PDF file attached, and be cited by another SSRN
author, cite another SSRN author, or both. This subset of the
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FIG.1. An example citation network among authors, papers, and
institutions. Large colored ellipses represent institutions, white rectangles
(labeled with letters) within each ellipse represent papers, and the numbers
within the rectangles represent individual authors. Many of the papers are
multiauthored. For example, paper C has three authors (2, 4, 5). Authors are
affiliated with the institution in which a given paper is located, unless
indicated otherwise by coloration. For example, author 1 is associated with
the brown institution even though paper H appears in the blue ellipse.
Arrows represent citations. There are 10 citations, eight papers, 10 authors,
and three institutions in this citation network. [Color figure can be viewed
in the online issue, which is available at wileyonlinelibrary.com.]

SSRN consisted of 4,468 institutions, 84,808 authors,
162,185 papers, and 1,465,082 references. Note the hierar-
chical structure of the data: Authors are affiliated with one or
more institutions, papers are affiliated with one or more
authors, and citations are directed among papers. To illus-
trate this basic, but also complicated structure, Figure 1
shows a hypothetical example for a much smaller citation
network with 10 authors, eight papers, and three institutions.
The colored ellipses represent institutions, the numbers are
individual authors, and the rectangles labeled with letters are
papers. The paper, author, and institution relationships
are combined in this figure, but they can be disaggregated to
show only the papers (Figure 2), authors (Figure 3), or insti-
tutions.® In this study, we compute rankings based on the
author-level network.

Eigenfactor Scores

The Eigenfactor algorithm provides a methodology for
determining which nodes in a citation network are the most
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FIG. 2. Paper citation network corresponding to Figure 1. Rectangles
represent papers, and arrows represent citations among those papers. Paper
F is the oldest paper in the example, and paper H is the most recent paper
written. Many of the papers cite multiple other papers, but only cite
backward in time. Because of this time constraint, paper F cites no papers
in this network and paper H receives no citations. Therefore, older papers in
this type of network typically receive larger numbers of citations than newer
papers. (Note: Albeit rare, there are scenarios when a paper will cite
forward in time. This occurs when a paper A cites an older version of paper
B, and paper B contains a newer version than paper A. Because we group
all versions of a paper into a “group,” this could be considered a citation
forward in time.) [Color figure can be viewed in the online issue, which is
available at wileyonlinelibrary.com.]

FIG. 3. Author citation network corresponding to Figure 1. Circles
represent authors, and arrows represent citations among the authors. The
weight of each directed arrow indicates the relative fraction of citations
from the source author to the recipient author. For example, the citation
weight from author 9 to author 8 is twice the weight of that from author 10
to author 8. This is because author 9 cites only author 8, whereas author 10
cites multiple authors. [Color figure can be viewed in the online issue,
which is available at wileyonlinelibrary.com.]

important or influential. The algorithm does this by comput-
ing a modified form of the eigenvector centrality of each
node in the network (Bonacich, 1972). The intuition behind
eigenvector centrality is that important nodes are those

that are linked to by other important nodes; although this
may sound circular, importance scores can be calculated
recursively according to this principle. Although we apply
this approach to citation networks, there are many other
applications. For example, this basic concept is at the heart
of Google’s PageRank algorithm (Page, Brin, Motwani, &
Winograd, 1998).

The Eigenfactor scores can be seen as the outcome of
either of two conceptually different but mathematically
equivalent stochastic processes. The first process is a simple
model of research in which a hypothetical reader follows
chains of citations as the reader moves from author to author.
Imagine that a researcher goes to the SSRN and selects an
author at random. After (optionally) reading the article, the
researcher selects at random one of the other authors who is
cited by the present author. The researcher repeats this
process ad infinitum. Eventually, the download patterns
approach a steady state.® An author’s Eigenfactor score is the
percentage of the time that the researcher spends with this
author’s work in the researcher’s random walk through the
literature.

The second equivalent process is an iterated voting pro-
cedure.” Each author begins with a single vote and passes it
on, dividing the vote proportionally based on those authors
whom he or she cites. In other words, if the author cites
two authors—author A one time and author B two
times—he or she would distribute one third of his or her
vote to author A and two thirds of the vote to author B.
After one round of this procedure, some authors will
receive more votes than others. In the second round, each
author passes on his or her current vote total, as received in
the previous round, again dividing this quantity equally
among those authors whom the author cites. This process
is iterated indefinitely. Eventually, a steady state is
approached in which each author receives an unchanging
number of votes in each round.” An author’s Eigenfactor
score is the percentage of the total votes that the author
receives at this steady state.

Eigenfactor scores have previously been used to rank
scholarly journals (Bergstrom, 2007; West, Bergstrom, &
Bergstrom, 2010b), and the scores are freely available
online at http://www.eigenfactor.org. In this article, we
extend the Eigenfactor algorithm to the author level and
apply it to the SSRN database. The SSRN data tally the
number of times that each paper in the SSRN database has
been cited by each other paper in the SSRN database since
the inception of the database. From these data we can con-
struct an author citation network—a directed network in
which each author is a node and a weighted, directed edge
connects author 1 to author 2 if any paper by author 1 cites
any paper by author 2.

Creating the Weighted Cross-Citation Matrix

From the citation database developed by SSRN, we begin
by extracting those citations from SSRN papers that refer-
ence other SSRN papers.'® At the time of the analysis, this
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set of papers featured 84,808 unique authors. From these
authors and citations, we create a 84,808 by 84,808 square
cross-citation matrix R that tallies the raw number of times
that the SSRN papers of each author cite the SSRN papers of
each other author, where

R; = citations from author j to author i.

When constructing R, we omit all self-citations'' by setting
the values along the diagonal of this matrix to zero. We
ignore self-citations to minimize the incentive for opportu-
nistic self-citation. In the data used for this analysis, there
were 21,470 authors who cited at least one of their own
SSRN papers (25.4% of all authors).'> Before their removal,
those citations consisted of 6.4% of all weighted citations.
Before calculating Eigenfactor scores, the citation matrix
R must be normalized to divide credit among authors of
multiauthored papers and to scale by the number of outgoing
references from each paper. We treat these steps in turn.

Dividing credit by the number of authors. The number of
authors on a scholarly paper varies widely both within and
between fields. As de Solla Price notes (de Solla Price,
1981), if every author on a paper were to receive full credit
for each citation that the paper received, this would cause
some papers to be counted multiple times in the bibliometric
tally, whereas others would be counted only once. Similarly,
authors who tend to work as parts of large teams would be
correspondingly overvalued. Such factors can have a major
influence on both cardinal and ordinal rankings (Egghe,
Rousseau, & Van Hooydonk, 2000; Gauffriau & Larsen,
2005).

We follow de Solla Price’s proposed solution: The credit
for a paper “must be divided among all the authors listed on
the byline, and in the absence of evidence to the contrary it
must be divided equally among them. Thus, each author of a
three-author paper gets credit for one-third of a publication
and one-third of the ensuing citations” (de Solla Price, 1981,
p. 986).

Dividing credit by the number of outgoing references. Pa-
pers also vary widely in the number of outgoing references
that they confer upon other articles. To correct for these
differences, in our choice of weights, we divide each refer-
ence by the number of outgoing references that each paper
confers, such that each paper contributes a total citation
weight of 1.0 that is shared among all of the papers that it
cites.

Assigning credit across multiple versions of a paper. Pre-
print archives such as SSRN tend to house multiple versions
of the same paper. It is not unusual for each one of these
versions to receive unique citations, and the final published
paper may receive only a modest fraction of the total cita-
tions received by all versions.

Thus, instead of counting citations only to the final
version of a paper, SSRN groups all variants of the same

paper together into a “version group” and tallies the total
number of citations to each version group. We do this for
both the citing paper and the cited paper. This requires a lot
more work in building the citation network, but we believe
this versioning step is critical for capturing the full credit to
an author.

Computing the weighted citation matrix. Assume that
SSRN authors have unique identifiers {1, 2, ... , Naunors}-
From the raw citation matrix R, we construct a weighted
cross-citation matrix Z such that Z; gives us the weighted
number of times that author j has cited author i.

Per the earlier discussion, the weights are determined as
follows. Take paper X with m authors, xi, X2, ..., X, that
cites paper Y with n authors yi, y, ..., y,. Let ¢ (X) be the
number of references in the bibliography'® of paper X. Then
this citation from paper X to paper Y contributes weights

1 11
0= ——
c(X)mn

ey

for each author j of paper X to each author i in paper Y. The
entry Z; is the sum of all weights as calculated earlier for all
citations from author j to author i. If the paper has multiple
versions, this refers to the version group, not any individual
paper in the group.

Calculating Eigenfactor Scores for Authors

The Eigenfactor algorithm models a random walk on the
author citation network. This random walk is described by
the column-stochastic form of the weighted citation matrix
Z. Thus, to calculate Eigenfactor scores, we first normalize
Z by the column sums (that is, by the total number of
outgoing references from each author) to create a column-
stochastic matrix M, which can be written as

=Sz, @)

Following Google’s PageRank approach (Langville &
Meyer, 2006; Page, Brin, Motwani, & Winograd, 1998), we
define a new stochastic matrix P as follows:

P=oM+(1-)A, 3)
where
A=a-e 4

where a is a column vector such that a¢; = (number of articles
by author i)/(number of total articles written by all authors in
the database), and e’ is a row vector of 1’s.

Under our stochastic process interpretation, the matrix M
corresponds to a random walk on the citation network, and
the matrix P corresponds to a Markov process, which with
probability o follows a random walk on the author citation
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network and with probability (1 — ) “teleports” to a random
author, proportional to the number of articles published by
each author. We teleport to an author with probability pro-
portional to the number of articles (version groups) written
by that author to avoid overinflating the influence of authors
with small numbers of articles (version groups), and under-
inflating the influence of authors with large numbers of
articles (version groups). We define the weight of each
author as the leading eigenvector of P. We compute the
leading eigenvector of the matrix P (with teleportation)
rather than using the leading eigenvector of M (without
teleportation) for two reasons:

1. The stochastic matrix M may be nonirreducible or peri-
odic. Adding the teleport probability 1 — o ensures that P
is both irreducible and aperiodic, and therefore has a
unique leading eigenvector by the Perron-Frobenius
theorem (MacCluer, 2000).

2. Even if the network is irreducible without teleporting,
rankings can be unreliable and highly volatile when some
components are extremely sparsely connected. Teleporta-
tion keeps the system from getting trapped in small,
nearly dangling clusters by reducing the expected dura-
tion of a stay in these small cliques.

However, the teleportation procedure introduces a small
but systematic bias in favor of rarely cited authors, because
these authors are visited occasionally by teleportation. The
Eigenfactor algorithm corrects for this directly. Our final
author rankings will not be given by the author eigenvector
f, but rather by the product of Mf. Note that as the telepor-
tation frequency o vanishes, Mf converges to f. We define
the author-level Eigenfactor score w; of author i as the
percentage of the total weighted citations that author i
receives from our 84,808 source authors. We can write the
vector of author-level Eigenfactor scores as

_ 100Mf
~ e'Mf

®)

Institutional Rankings

Like measures of mass or volume, the Eigenfactor score
w is an additive metric. To find the Eigenfactor score for a
group of authors, simply sum the Eigenfactor scores of the
authors in the group. Thus, it is straightforward to use the
author-level Eigenfactor scores to rank various depart-
ments, universities, or other institutions. By this approach,
the Eigenfactor score assigned to an institution /; is simply
the sum /; = X; w;, where wy is the author-level Eigenfac-
tor score of author k associated with institution. Moreover,
when groups constitute a hard partition—that is, each indi-
vidual belongs to one and only one group—the group-level
score computed in this way is the same value that one
would get by computing Eigenfactor scores directly from
a group-level citation matrix that weights each group
member by its Eigenfactor score therein. We prove this in
the Appendix.

However, in this case, we are not dealing with a hard
partition. Individual authors may be associated with mul-
tiple institutions. We could recover the equivalence result by
assigning fractional credit to each institution with which
a multi-institutional author is associated. But such an
approach may bias results against institutions that are able to
recruit high-prestige authors with multiple affiliations. Thus,
we have opted to grant credit for the full author-level Eigen-
factor score to each and every institution with which an
author is affiliated. As a result, the group-level Eigenfactor
scores that we report in this article—computed by summing
author-level scores—differ slightly from the scores that
would result operating directly on the group-level citation
matrix.

Results
Author Rankings

The Eigenfactor algorithm was independently coded by
the Eigenfactor team and the SSRN team in two different
programming languages to ensure the integrity of the
results.

There were 84,808 authors ranked by Eigenfactor
scores.' The top 20 authors and their institutional affilia-
tions are listed in Table 2. The rankings for an additional
30,000 authors can be found at http://www.ssrn.com. When
summed together, the top 20 authors accounted for 7.5% of
the total Eigenfactor score for all authors. The mean Eigen-
factor score for all 84,808 authors is 0.12, with an standard
deviation of (SD) 0.97. The author-level Eigenfactor scores
can be interpreted in the following way: If one were to
randomly follow citations from author to author in the SSRN
database for a very long time, 0.688% of the time would be
spent at literature authored or coauthored by Andrei Shleifer
(see Methods for alternate explanations). That is a substan-
tial proportion, given the 84,808 authors in this citation
network. Notably, many of the top 20 authors posted their
papers on SSRN at the inception of SSRN. This gives these
authors an advantage in accumulating downloads and prob-
ably citations as well.

In Table 2, columns four, five, and six indicate the total
citation weight given to other SSRN authors, the total cita-
tion weight received from other SSRN authors, and the
number of papers authored or coauthored by each author,
respectively. The numbers in these three columns are not
integer valued because of the way citation and article credits
are divided among multiauthored papers (see Methods and
Equations 1 and 6).

The cumulative distribution of Eigenfactor scores for the
top 10,000 authors is shown in Figure 4. The authors are
ordered on the x-axis from highest ranked to lowest ranked
(that is, author 100 was the author who ranked 100th by
Eigenfactor score). The shape of the curve shows that most
of the Eigenfactor comes from a small percentage of the
authors. The dashed lines indicate the authors at which 50%
and 80% of the total Eigenfactor score is attained. The top
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TABLE 2. The highest scoring 20 of 84,808 authors in the SSRN ranked by their author-level Eigenfactor scores. For the latest rankings, see
http://www.ssrn.com/institutes/top_authors_transfer_files/top_authors_transfer_files.html

Rank Author EF CT, CT,; Art. Institution

1 Jensen, Michael C. 83.2 8.5 226.7 78.7 Harvard University

2 Shleifer, Andrei 68.8 14.1 210.0 78.0 Harvard University

3 Campbell, John Y. 53.1 11.2 150.5 61.0 Harvard University

4 Heckman, James J. 38.5 9.5 81.7 91.2 University of Chicago

5 Shavell, Steven 37.0 13.1 116.1 91.0 Harvard University

6 Glaeser, Edward L. 36.4 21.6 87.7 93.6 Harvard University

7 Hall, Robert E. 34.3 8.6 67.0 52.9 Stanford University

8 Barro, Robert J. 32.7 6.6 93.9 52.6 Harvard University

9 Acemoglu, Daron 32.5 17.1 104.2 94.2 Massachusetts Institute of Technology
10 Vishny, Robert W. 31.8 1.9 97.1 18.7 University of Chicago
11 Rajan, Raghuram G. 31.8 12.2 98.3 48.9 University of Chicago
12 Poterba, James M. 314 10.6 55.6 76.8 Massachusetts Institute of Technology
13 Zingales, Luigi 30.7 12.1 111.1 60.3 University of Chicago
14 Murphy, Kevin J. 30.4 4.0 58.8 19.0 University of Southern California
15 Stein, Jeremy C. 30.4 7.4 93.6 42.4 Harvard University
16 Feldstein, Martin S. 30.1 15.4 60.5 132.0 National Bureau of Economic Research
17 Shiller, Robert J. 29.6 7.8 62.3 61.6 Yale University
18 Harvey, Campbell R. 29.1 18.0 116.8 57.8 Duke University
19 Blanchard, Olivier J. 28.6 12.4 91.5 65.9 Massachusetts Institute of Technology
20 Lopez de Silanes, Florencio 28.0 3.4 97.2 224 EDHEC Business School

Note. These rankings reflect centrality and influence within the SSRN community, rather than in academia generally. A complete list for the top 30,000

authors is available online at http://www.ssrn.com.

Art. = articles written; CT; = in citation weight; CT, = outgoing citation weight; EF = Eigenfactor x 100.

Cummulative Eigenfactor Score
40
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FIG. 4. Cumulative distribution of Eigenfactor score. The fraction of the
total Eigenfactor accounted for by the first 10,000 authors (92.82%) of
84,808 total authors. The x-axis indicates author rank (that is, author 500 is
the 500th highest ranked author by Eigenfactor). The y-axis is the cumulative
Eigenfactor score. Dashed vertical lines indicate how many authors account
for 50% of the total Eigenfactor score and 80% of the Eigenfactor score. The
50% line crosses the x-axis at the author ranked 612, and the 80% line crosses
the x-axis at the author ranked 3,569. The Eigenfactor scores at those 0.5 and
0.8 quantiles are 0.0296 and 0.0040, respectively.

612 authors account for 50% of the Eigenfactor score, and
the top 3,569 authors account for 80% of the Eigenfactor
score. The Eigenfactor scores at those 0.5 and 0.8 quantiles
are 0.0296 and 0.0040, respectively.

The Eigenfactor score can be viewed as a form of
weighted citation count where the weights reflect the pres-
tige of the citing authors. Therefore, one would expect the
Eigenfactor scores to correlate with other weighted citation
counts. Figure 5 shows a log-log plot of Eigenfactor scores
versus the total citation weight Q for each author. We cal-
culate total citation weight by simply tallying citations and
weighing each author’s fractional share as we have done for
the Eigenfactor scores, as given in Equation 1. Each author
i receives citation weight @ from author j. Therefore, the
total citation weight for author i is

Q=2 ©)

The dashed line in Figure 5 is a best fit linear regression
line on the log data. Despite the relatively high correlation
(p=.88), an FEigenfactor score near the middle of the
distribution could be associated with a three order of
magnitude range of citation weights. In other words, two
authors could have the same Eigenfactor score but have a
citation weight that was different by three orders of mag-
nitude. The converse is even more extreme; authors with
the same citation weight can have an Eigenfactor score that
varies more than four orders of magnitude. These differ-
ences result in very different ordinal rankings when
authors are ranked by citations'> or ranked by Eigenfactor
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FIG. 5. Relationship between Eigenfactor score and total citation weight.
The x-axis is the Eigenfactor score. The y-axis is the total citation weight €;
for each author i. The linear regression (dashed line) of log citation weight
a on log Eigenfactor score b is given by the following equation:
a=0.753b+ 1.709. p = .88.

score. (See West, Bergstrom, and Bergstrom [2010a] for a
more thorough discussion about these kinds of correlation
coefficients.)

Network Sparseness

Author citation networks are typically very sparsely
connected (that is, the cross-citation network has many
zero entries). However, there are well-connected authors
who cite a relatively high proportion of all the other
authors in the database. One contributor, Rene M. Stulz,
cited 927 unique SSRN authors. Figure 6 illustrates this
network sparseness. For the 73,471 authors who cited at
least 1 author in the SSRN, we counted the number of
unique authors cited. The distribution of this tally is shown
in Figure 6. There are 67,338 authors (91.7% of authors
who cite at least one paper) who cite fewer than 100 other
different SSRN authors.

Figure 7 illustrates the converse; it shows the number of
unique SSRN authors citing each author in the database. In
other words, for each author, we look at the incoming cita-
tions (from other unique authors). Relative to the distribu-
tion shown in Figure 6, the mode of this distribution is
shifted to the left, and the SD is much higher (164.1). Most
authors receive citations from relatively few other authors,
but the distribution of citations received has a longer tail
than the distribution of authors cited; some authors have
been cited by a large number of unique authors. For
example, Andrei Shleifer has received citations from 9,672
different authors. Another way to think about it is that 7.6%
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FIG. 6. Unique authors cited. Histogram shows the number of different
authors cited by each individual author in the SSRN. Most authors cite
fewer than 100 different authors. The log scale on horizontal axis is base 10.
The 10,268 authors who cited zero authors (but received citations) are not
shown. Among the authors who cited other SSRN authors, the mean
number of authors cited is 32.8, with a standard deviation of 53.1. The
network schematic shows the direction of citations being tallied in this
figure.

of all authors in the SSRN community have cited Schleifer.
This speaks to the centrality of Schleifer in this particular
community.

Many authors either received no citations or gave out
no references. There were 10,268 authors who received
citations but gave out no references. These authors in a
citation network are known as dangling nodes. Conversely,
there were 24,602 authors who gave out references but
received no citations. Authors who both gave out zero ref-
erences and received zero citations were eliminated before
the 84,808 x 84,808 adjacency matrix was created. Also,
authors with zero articles and authors who have abstracts but
no full-text documents in the SSRN eLibrary were elimi-
nated before the construction of the adjacency matrix.

Ranking Institutions

Thousands of institutions from around the world are rep-
resented in the SSRN database. Most of these institutions are
universities or university departments, but there are other
types of institutions such as research collaboratives (e.g.,
National Bureau of Economic Research [NBER], Centre
for Economic Policy Research [CEPR], European Cor-
porate Governance Institute [ECGI], Institute for the Study
of Labor [IZA], and CESifo). Using the author-level Eigen-
factor scores, these universities and departments can be
ranked. This analysis was performed on 7,865 different
institutions and constituent departments. Table 3 lists the top
20 institutions by Eigenfactor score.
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FIG. 7. Incoming citations from unique authors. This histogram is the
converse of Figure 6. It shows the frequency of different authors citing each
author in the SSRN (see the network schematic in the figure that shows the
direction of citations tallied). Only the 53,253 authors receiving at least one
citation are shown. Among these authors, the mean number of unique citing
authors is 41.7, and the standard deviation is 164.1.

TABLE 3. Top 20 research universities and other academic institutions
ranked by the Eigenfactor scores of SSRN authors affiliated with the
institution.

Rank Institution > EF
1 National Bureau of Economic Research 4,597.8
2 Harvard University 1,133.2
3 Centre for Economic Policy Research 1,128.2
4 University of Chicago 518.7
5 Institute for the Study of Labor 518.3
6 Massachusetts Institute of Technology 415.9
7 New York University 356.9
8 European Corporate Governance Institute 337.7
9 University of California, Berkeley 316.8

10 Columbia University 310.6

11 Stanford University 307.4

12 CESifo 293.7

13 International Monetary Fund 278.3

14 University of Pennsylvania 254.9

15 Princeton University 248.5

16 Federal Reserve Banks 243.7

17 Yale University 220.8

18 World Bank 185.9

19 Northwestern University 182.6

20 Government (United States) 161.1

Note. There were 7,865 institutions ranked. A complete list is available
online at http://www.ssrn.com. These rankings reflect centrality and influ-
ence within the SSRN community, rather than in academia generally.
YEF =sum of SSRN author-level Eigenfactor scores (x100) associated
with that institution.

TABLE 4. Top 20 countries represented in the SSRN database, ranked by
author-level Eigenfactor scores.

Rank Country > EF
1 United States 13,124.0
2 United Kingdom 1,701.3
3 Germany 1,018.0
4 Belgium 393.2
5 Netherlands 208.1
6 Canada 192.4
7 Italy 186.8
8 France 179.9
9 Switzerland 144.6
10 Sweden 117.6
11 Spain 112.1
12 Israel 101.5
13 Australia 81.0
14 China 47.9
15 Denmark 30.3
16 Hong Kong 30.2
17 Norway 26.3
18 Singapore 249
19 Japan 24.3
20 Austria 20.0

Note. These rankings reflect centrality and influence within the SSRN
community, rather than in academia generally. There were 129 countries

represented in the database. >, EF: = sum of SSRN author-level Eigenfactor
scores (X 100) associated with that country.

Institutions are one way to aggregate authors; countries
are another. Countries are credited with a paper if the author
of the paper is associated with an institution that lies within
the country borders. There are 129 countries represented in
the SSRN. The top 20 are listed in Table 4. The United
States carries 72% of the total Eigenfactor for all countries.
As with author rankings, it is important to understand that
this is a measure of centrality to the SSRN rather than a
measure of the relative overall productivity of researchers in
various countries. Some institutions have working paper
series, which gives them an inherent advantage. Also, some
countries benefit from the presence of collaborative research
organizations such as NBER in the United States or ECGI in
Belgium that may have hundreds of scholar associates who
are full-time faculty employed by various universities
around the world.

Usage Versus Citations

Citation counts are not the only way to assess the
quality or impact of scholarly work, and indeed they may
systematically undervalue certain papers that are widely
read by authors, students, or practitioners, but less often
cited in the subsequent research literature (Bollen & Van
de Sompel, 2008). In addition to tracking citations, SSRN
has collected usage data as well, tracking every single
download of every single paper in the archive since the
archive’s inception. We can use these data to rank authors
by downloads. Table 5 lists the top 20 authors by this
metric. Each time a paper is downloaded, the authors of
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TABLE 5. Top 20 authors by downloads per author.

Rank Author Downloads Institution
1 Jensen, Michael C. 325,974.0  Harvard University
2 Fernandez, Pablo 245,156.0  University of Navarra
3 Fama, Eugene F. 187,024.0  University of Chicago
4 Solove, Daniel J. 131,362.0  George Washington
University
5 Velez-Pareja, Ignacio 107,687.0  University Tecnologica de
Bolivar
6 French, Kenneth R. 90,433.0  Dartmouth College
7 Bebchuk, Lucian A. 88,217.1  Harvard University
8 Bruner, Robert F. 84,9744  University of Virginia
9 Faber, Mebane T. 78,676.0  Cambria Investment
Management
10 Bainbridge, S. M. 71,763.5 UCLA
11 Sunstein, Cass R. 70,571.3  Harvard University
12 Castronova, Edward 69,805.0 Indiana University
Bloomington
13 Goetzmann, William N. 69,692.1  Yale University
14 Lott, John R. 65,280.5  University of Maryland
15 Meckling, William H. 64,982.3  University of Rochester
16 McGee, Robert W. 64,583.1  Florida Int. University
17 Lemley, Mark A. 62,386.6  Stanford University
18 Black, Bernard S. 60,4479  Northwestern University
19 Lo, Andrew W. 59,930.0 Massachusetts Institute of
Technology
20 Penman, Stephen H. 56,001.7  Columbia University

Note. The weight for each downloaded paper is distributed evenly
among the authors (that is, an author will receive half a download if they
coauthor a paper with one other author). Downloads listed are the sum of
this weight for each author.

that paper receive credit for that download. The credit is
divided evenly among the authors, similar to how citation
credit is distributed (see Methods section), so that a paper
with 3 authors and 300 downloads contributes a score of
100 to each author. Thus, the “download weight” for an
author is simply the sum of the contributions from each
paper for which that individual is an author.'®

Comparing Table 2 with Table 5, we find the top 20 lists
change dramatically, indicating that downloads and cita-
tions provide different information. Researchers in biblio-
metrics have explored the relationships between citations
and usage for several data sets; in general, citation mea-
sures and usage measures are positively correlated but
provide complementary information about the influence of
scholarly papers (Bollen, Van de Sompel, Smith, & Luce,
2005; Bollen & Van de Sompel, 2006; Kurtz et al., 2005;
Watson, 2009). Figure 8 is a log-log plot that shows
author-level Eigenfactor scores plotted against download
weight.

We collected download information for the same 84,808
authors included in the citation network. When the credit is
divided among the authors as explained earlier, the average
download weight per author is 436.6 and the SD is 2,331.6.
The maximum download weight attained up to this point is
325,974.
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FIG. 8. Downloads versus Eigenfactor scores for SSRN authors. In this

log-log plot, each data point represents an author and the corresponding
Eigenfactor score and number of downloads per author (splitting credit
among coauthors). There are 52,196 authors represented in this figure.
Authors who have an Eigenfactor score of zero or have zero downloads are
not shown.

The Pearson’s linear correlation coefficient between
Eigenfactor and download weight is p = .485. Thus, we see
that Eigenfactor scores provide considerable information
above and beyond that available from download scores and
vice versa. There are scholars who have relatively high
Eigenfactor scores but few downloads; in many cases, this
occurs because the paper is available from other sources
such as the NBER or CEPR servers and because NBER and
CEPR charge nonmembers $5 for downloading NBER and
CEPR papers on SSRN, whereas most of the rest of the
papers on SSRN can be downloaded at no cost. There are
also authors [such as Fairmain with his classic treatise
“Fuck” (Fairman, 2006); see also Fairman (2007) for the
impact of that oft-downloaded article on institutional rank-
ings] who have written papers that are downloaded a large
number of times for various reasons but receive relatively
few citations.

Within the SSRN database there are 22,475 authors who
have an Eigenfactor score of zero but have a nonzero number
of downloads per author. This means that there are many
papers in the SSRN that are downloaded and viewed but are
not cited. No authors have zero downloads but a nonzero
Eigenfactor score.

Usage data can also be used to rank institutions. Table 6
shows the top 20 institutions ordered by download weight.
The YD was calculated by summing the download weight

for every author associated with each institution. As with
author rankings, institutional citation ranks differ substan-
tially from institutional download ranks.
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TABLE 6. Top 20 research universities and other academic institutions
ranked by author downloads.

Rank Institution >D
1 National Bureau of Economic Research 3,248,753.1
2 Harvard University 1,696,742.2
3 European Corporate Governance Institute 1,288,849.5
4 Centre for Economic Policy Research 992,061.1
5 University of Chicago 934,392.0
6 New York University 909,346.1
7 Yale University 780,232.1
8 University of Pennsylvania 695,644.3
9 Columbia University 693,639.0
10 World Bank 629,944.6
11 Stanford University 620,438.6
12 Institute for the Study of Labor 610,139.8
13 Massachusetts Institute of Technology 572,024.1
14 CESifo 565,851.0
15 International Monetary Fund 528,008.0
16 University of Virginia 489,823.1
17 Duke University 450,274.6
18 University of California, Berkeley 434,392.9
19 Government (United States) 413,465.0
20 George Washington University 413,285.8

Note. There were 7,865 institutions ranked. A complete list is available
online at http://www.ssrn.com.
2D =sum of SSRN author-level download weights for authors associated
with that institution.

The Arrow of Time

One particular challenge with iterative ranking algo-
rithms at the paper level is the time directionality of cita-
tion networks: Any given paper cites only papers published
earlier than it.'” Therefore, a random walker following cita-
tions will progressively move backward in time; earlier
authors may receive a disproportionate number of visits
and thus disproportionately higher scores. One way to
counter this effect is to bias the teleport process toward
more recent publications (Walker, Xie, Yan, & Maslov,
2007a). In principle, the same problem could arise for
author-level networks if they extend over sufficiently
long time intervals; Alfred Marshall never cited Paul
Samuelson.

In practice, this does not turn out to be a major problem
for the SSRN corpus, given its relatively narrow time
window from 1995 to the present,'® and the fact that most
authors with early papers in the database remain active in
the community at present. Thus, we do not need to use any
sort of time-biased teleport mechanism in the article-level
Eigenfactor rankings that we compute for the SSRN. To
check this, we looked at the distribution of papers dates'
immediately after teleport, one step after teleport, and so on.
If the random walk tended to drift back in time, we would
see that, as we take more random walk steps, the distribu-
tion of paper dates would shift to earlier years. Figure 9
shows the distribution of authors’ earliest papers (top panel)
and most recent papers (bottom panel) after teleport (step 0)
and after a single step (step 1) on the network.” After one

step, the distribution of the oldest paper is shifted back in
time, but this does not in and of itself indicate strong overall
backward movement. In fact, the distribution of the most
recent paper actually shifts forward in time after a step on
the network. This means that the random walk process
moves us toward authors with older papers in the database,
but these same authors also have more recent papers as well.
This is less counterintuitive than it seems. The random walk
process moves toward authors who are more central and
probably have more papers overall. Thus, we should not be
so surprised to see a broader range of dates for these
authors.

Discussion

Ranking papers, authors, journals, departments, or insti-
tutions does not necessarily make the world a better place.
Indeed, where ranking systems provide narrow-minded
administrators and faculty with an excuse to avoid hard work
and deep thought, they may even be harmful to the function-
ing of academia. Then why rank at all? Although ranking for
its own sake may or may not offer net benefits to the com-
munity, we believe that advances in scholarly ranking will
have at least two consequences that benefit science greatly.
We treat these in turn.

First, ranking provides incentives for early and open
sharing of scientific information. The SSRN repository, like
other online archives, performs an important function for
the scholarly community. By enabling the distribution of
working papers and by making author-submitted manu-
scripts at all stages easily available and at no cost, SSRN
reduces the time that it takes for an idea, first conceived in
one scholar’s mind, to become a part of the conversations
among many scholars around the world.

Scholars respond to incentives like anyone else, and
because scholars are rewarded for prominence and prestige,
ranking systems can provide strong incentives (West, 2010).
One of the best ways an author can advance his or her score
under the ranking system described in this article is by
uploading all versions of all papers to SSRN as early
as possible. In this way, authors have better chances of
being read and subsequently cited. In this respect, ranking
generates a positive externality for science.

Second, ranking furthers search (Bergstrom, 2010).
Search engines such as Google have fundamentally
changed scholarship by improving our ability to find
rapidly and efficiently the information that we value.
Ranking algorithms such as PageRank lie at the heart of
these search engines; effective search requires that we
account for not only the match of search terms to target
document, but also for the importance of the target docu-
ment within a larger collection. Just as Google’s PageRank
algorithm helps with the discovery process on the World
Wide Web by filtering search results, the Eigenfactor
metrics described in this article can help with the discovery
process within this citation network. Properly integrated
with other search tools and algorithms, the Eigenfactor

10 JOURNAL OF THE AMERICAN SOCIETY FOR INFORMATION SCIENCE AND TECHNOLOGY—ee 2013

DOI: 10.1002/asi



0.4 0.4
- Step 0 - Step 1
O 035+ O 035
= < _
=} 35
@ o3} 1 ® o3} 1
] &
CED 0.25F E g) 0.25F E
k<) e
E o2} 1 & o2t 1
© ©
2:‘0.15 r = a 0.15} R
3 e
S o1f {1 ® o1} 1
8 o
S E
0 ml ] ﬂ ﬂ 0 ﬂ D =
<1998 1999 2001 2003 2005 2007 > 2008 <1998 1999 2001 2003 2005 2007 > 2008
year of oldest paper year of oldest paper
0.4 0.4 T T
Step 0 Step 1

o

o w

w &
T T
1 1

o

o

a
T
1

o
-
(%))

probability of finding an author

g
o
a

0
<1998 1999 2001 2003 2005

2007
year of most current paper

> 2008

probability of finding an author

<1998 1999 2003 > 2008

2001
year of most current paper

2005 2007

FIG. 9. The probability distribution of finding an author with their oldest paper (top panels) and most current paper (bottom panels) in a given year, after
teleportation (step 0) and one step after teleportation (step 1). After one step on the network, there is a higher probability of finding an author with a paper
before 1998, but the probability is higher still of finding an author—possibly the same author—with a paper subsequent to 2008. [Color figure can be viewed
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metrics can help users to find important papers that may
have been overlooked by other ranking methods based on
downloads or reputation. Such applications in discovery
provide a major motivation for the present work. It is our
hope and belief that advances in ranking will serve our
quest for more efficient search, helping academics sift
through ever-growing volumes of information to find the
hidden gems and lost papers that are valuable for their
research endeavors.

Finally, it is important to recognize what these statistics
do and do not represent. Eigenfactor is not a direct
measure of quality. Rather, Eigenfactor is (as discussed
earlier) one of a family of network centrality measures.
The author-level Eigenfactor scores presented in this
article measure the centrality of authors within the particu-

lar network (SSRN) that we study. For example, notice that
of the top 20 authors in Table 2, 7 authors are associated
with Harvard University. Although all of these individuals
are influential academics by any measure, the preponder-
ance of Harvard faculty at the top of the list probably
reflects the origins of SSRN at Harvard, and thus the cen-
trality of this group of researchers in the broader network
they have formed around themselves. The same caution
should also be applied to the institutional rankings derived
in this article.

For our purposes, these rankings are simply one of
many filters that can be applied to a large, seemingly
unmanageable data set. In this study, we used the entire
SSRN corpus. This includes papers from the social sci-
ences, economics, law, and business. However, rather than
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running the Eigenfactor algorithm on the full network, we
can apply the algorithm to any subset of the citation
network, such as those authors affiliated with one particu-
lar institution or country, to get rankings specific to the
interests of that group. Librarians and others could analyze
their own specific subscriptions. Departments and colleges
could look at intracollege or intercollege citations among
their faculty to examine how closely their faculty are
working together, and who is most central to the collabo-
rative work being done. Journal societies and associations
could use these algorithms to find the active members—
that is, who is citing and who is being cited by their
members. Other online archives such as SSRN could find
who is being read in their collections and what groups are
contributing to their particular field. There are many ways
that reference networks can be analyzed using the Eigen-
factor metrics and related approaches. We believe that pre-
print and postprint archives such as SSRN are extremely
useful for the scholarly community and for the quick dis-
semination of new ideas and papers. Ultimately, we would
like to use filters such as the author-level Eigenfactor
scores developed in this article to build better search
algorithms that help researchers mine the vast and ever-
expanding scholarly literature.
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Endnotes

1. The Eigenfactor Project is sponsored by the Bergstrom Laboratory
in the Department of Biology, University of Washington, Seattle, WA.
Rankings, algorithms, visual tools, and maps of science are freely available
online at http://www.eigenfactor.org/

2. SSRN is a preprint and postprint archive devoted to the rapid
dissemination of scholarly research in the social sciences, business, law,
and humanities. More information can be found online at http://
WWWw.ssrn.com/

3. The process of author disambiguation is an ongoing effort at SSRN.
Papers are received individually from authors and in bulk from other
sources. Those papers that are received in bulk are reviewed by SSRN staff,
and each paper’s authors are manually disambiguated as the papers are
added to the corpus. Individual papers submitted by authors are submitted
using the author’s own account and, therefore, do not require disambigua-
tion. SSRN’s customer service team merges accounts when an author
reports having two accounts or SSRN otherwise becomes aware of such
duplicate accounts. Instances of false positives (where two accounts that
have the same name are incorrectly merged) are rare.

4. Preprint and postprint archives such as SSRN often house multiple
versions of a paper. For this study, we were able to successfully group all
paper versions into “groups” so that all authors receive the full credit of a
citation.

5. Citation data for this article are based on SSRN CiteReader statistics
as of March 14, 2011. Care was taken in this study to protect all authors’
personal information. Only citation, article, institutional, and download
information were extracted from papers by SSRN authors. There are more
than 50,000 papers—primarily law papers—in the SSRN that have no formal
bibliography. We could not include these in the analysis for this version of the
article, but as the references in the footnotes in these papers are extracted by
CiteReader, they will be included in the rankings at http://www.ssrn.com. We
acknowledge that omitting these papers creates a field bias.

6. We include the paper and author-level figures to emphasize certain
features of each network that are mentioned throughout this article. Also,
when developing network metrics, we find these sample networks to be
invaluable in understanding the properties of network-based metrics.

7. See “rate view” at http://www.mapequation.org/mapdemo/index.
html for a demo of this process.

8. As long as the citation matrix is irreducible and aperiodic, we
ensure these via the “teleportation” procedure discussed later.

9. Again, we require irreducibility and aperiodicity.

10. Currently, SSRN records only those citations listed in the refer-
ences. Thus, we have missed references from legal scholars, who often
include references in footnotes. SSRN is in the process of tallying these
footnote references. These references will increase the number of refer-
ences by approximately 75% and will disproportionately affect law
authors.

11. Notably, these are self-citations between authors and not papers.
Therefore, a citation from a multiauthor paper to another multiauthor
paper is not removed. Only the citation between the same author is
removed.

12. There were 143 authors who: (1) cited only themselves and no
other authors in the SSRN, and (2) received citations only from themselves.
This indicates that they did not coauthor any of their self-cited papers with
any other SSRN authors.

13. This includes all references in the bibliography—those to SSRN
papers and those to non-SSRN papers.

14. The Eigenfactor scores are multiplied by 100 (see Table 2).

15. The differences are even greater when ranking by raw citations
instead of citation weight.

16. SSRN has gone to great lengths to ensure that reported downloads
are free of biases caused by bots, search engines, or gaming.

17. Some exceptions exist with working papers where paper A cites
paper B and paper B cites paper A, but this is rare.

18. Authors can and do submit papers with dates earlier than 1995. As
time goes on, more early papers will be uploaded to SSRN; however, if
those earlier papers are from authors still active in the SSRN community,
we do not expect our random walker to progressively move backward in
time.

19. The “paper date” is the first available date that we could find for
each paper. The date would be the earliest of the following: (1) publication
date, (2) date the paper was entered into the SSRN system, or (3) date
shown on any citation that is matched to the paper. If a paper was entered
in 2000 but has a publication date of 1975, then 1975 is the date used for the
paper. If a paper was entered in 2000, has an unrecognizable paper date, but
has a citation from 1975, then 1975 is used. The earliest date of these three
scenarios is always used. This is especially useful when dealing with
multiple versions of a paper.

20. The distributions change very little for higher numbers of steps and,
thus, are not shown.
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Appendix
Aggregating Eigenfactor Scores

Statement of Problem. Networks are often composed of
nodes that themselves can be arranged into larger groupings.
For example, individuals belong to households, college
teams are organized into conferences, and scholars are

associated with research institutions. In these situations, it
may be desirable to calculate eigenvector centrality scores
not only for the individual nodes, but also for the groups into
which the individual nodes are assigned. How should these
group-level rankings be generated? Should a group’s eigen-
vector centrality score be defined as the sum of the eigen-
vector centrality scores of its members? Or should it be
defined as the eigenvector centrality score associated with
that group in a new, coarse-grained, group-level network in
which each group is itself a node?

The Eigenfactor algorithm provides a way to compute
something like an eigenvector centrality score for a matrix
that fails to be irreducible and aperiodic. Similar questions
arise for Eigenfactor scores: How should the Eigenfactor
score of a group be defined?

In this article, we demonstrate one strength of the
eigenvector centrality and FEigenfactor approaches. As
with simple citation tallies, one gets the same result
whether one sums the scores of individual nodes to pro-
vide group-level scores or one analyzes the group-level
network assembled using a reasonable choice of aggrega-
tion procedure.

Eigenvector Centrality Scores

Setup: Let Z be the sets of nodes i =1, 2, . . . nin a weighted,
directed graph. Let G be a hard partition of the nodes of 7
into k=1...g = n groups, such that each node i is a
member of exactly one group Gi. Let P be the Markov
matrix associated with an irreducible and aperiodic Markov
process ¥ on the set 7 of individual nodes. (If v is the
PageRank process, for example, P is irreducible and aperi-
odic by construction.) Let P’ be the Markov matrix associ-
ated with this process when it is described at the level of
groups instead of nodes.

Proposition 1 Given the group-level Markov matrix P’, the
eigenvector centrality score of each group is equal to the
sum of the eigenvector centrality scores of its member
nodes as computed from the individual-level Markov matrix
P.

Proof: By the Perron-Frobenius theorem, w has a
unique stationary distribution A. Construct a shadow
process W on the groups in the partition G such that the
shadow process tracks the process y but records its present
state as the group index k rather than the node index i
(Fig. Al). Thus, the shadow process ¥/ is in state k if and
only if the process v is in some state i such that i € G;.
Moreover every node i belongs to one and only one group
Gy because G is a hard partition.

If the process y begins at its stationary distribution A, its
shadow process ¥ can be described by an aggregated matrix
P’ as follows: Let P/, be the conditional probability the
Markov process y transitions from a node in group G, to a
node in group Gy in a single step, conditional on starting in
G,, at a node selected with probability proportional to A. This
matrix is given by
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Process Y on nodes i

FIG. Al.
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In other words, to construct P’, we compute the outlink
weights for any group G; by summing the outlink weights
from each node i in G, where the contribution of node i in
G, is chosen proportional to A;.

Because y has a unique stationary distribution with prob-
ability A; on each node i, the shadow process ¥ has a unique
stationary distribution that places probability A = zieGk i
on each group Gi. Thus, by the Perron-Frobenius theorem,
the vector of eigenvector centrality scores for the aggregate
matrix P’ that we have constructed to describe ¥ is this
vector A

Eigenfactor Scores

Eigenfactor scores are calculated by taking a link-weight
matrix Z, removing self-links, and normalizing to produce a
column-stochastic matrix M. This matrix is converted to an
irreducible and aperiodic matrix P by a teleport procedure.
The eigenvector centrality scores for the matrix P are given
by the vector A. To ameliorate the effects of the teleportation
procedure, this vector A is then multiplied once more by M,
and the scores are normalized to sum to 100. In this article,
we show that the Eigenfactor scores associated with a group-
level aggregate matrix M’ are equal to the sums of the
Eigenfactor scores associated with the individual-level
matrix M.

Proposition 2 Given the group-level Markov matrix
M’, the Eigenfactor score of each group is equal to
the sum of the Eigenfactor scores of its member
nodes as computed from the individual-level Markov
matrix M.

Shadow process ’ on groups k

The Markov process y on individual nodes has a shadow process ¥ on groups.

Proof: Define the group-level Markov matrix M’ as the
aggregation to the group level of the individual-level
Markov matrix M, with each node weighted according to its
eigenvector centrality A under the process P:

ML, = M,
SRS
1eGyy,

Let w; be the individual-level Eigenfactor score associ-
ated with node i. We will show that the sum 2., w; of the
individual-level Eigenfactor scores for the nodes in a group
G, is equal to the group-level Eigenfactor score w'; for that
group, as calculated based on the group-level transition
matrix.

Let the

s=25

Eigenfactor normalizing constant

1 M;A;. Now we note that the normalizing con-

stant s' for the group-level Eigenfactor scores is equal to the
normalizing constant s for the node-level Eigenfactor
scores:

S
k=1 m=1
8 8 A
M; m
k2=1‘m2=‘l IEZG]( jz; 7 2 )’l

1eGyy

8 g
M, A ™
;teGk 2:‘1];:, ! z )’I IGZGM !

leGy,
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Thus, we have

Zszzzloo

ieGy i€Gy j=1

IOOZZZMUA

i€Gy m=1 jeGy,

10022 2

m=1ieGy jeGy,

10022 ZMu’l 2%

m=1ieGy jeGy,
leG,,

lOOZg-‘Mkli

NIy
m=1

=W,:

®)

This final expression is simply the group-level Eigenfac-
tor score based on the group-level Markov matrix M’ and
the group-level eigenvector centrality score A". Equation 8
follows from proposition 1. Thus, we have demonstrated the
proposition.
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