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ABSTRACT

Question: What is the general quantitative relationship between adaptive phenotypic
diversity, or bet-hedging, and the environmental uncertainty that selects for it?

Mathematical methods: Building on the fitness set approach introduced by Levins, we develop
a graphical heuristic for determining the optimal amount of diversity in a fluctuating environ-
ment. We use as our optimality criterion the expected long-term growth rate of a lineage.

Key insights: Each of the phenotypes in a polyphenic population may be seen as investing
a certain proportion of its reproductive effort in each of the possible environments. A bet-
hedging lineage that produces the phenotypes in just the right proportions – so that the overall
reproductive investment in each environment matches the environmental frequencies – grows
faster on average than other lineages. How much faster it grows than the resident population,
and thus the strength of selection towards the optimal bet-hedging strategy, depends on how far
the residents are from the optimal investment profile.

Predictions: A rigorous empirical demonstration that bet-hedging is adaptive requires a com-
parison of the degree of phenotypic diversification in similar populations subject to varying
levels of environmental uncertainty. We confirm that bet-hedging should be observed only
within a certain range of environmental variation; when the environment is more predictable
than this, a phenotypic generalist would do better. We furthermore provide a simple method to
calculate this range, based on the shape of the fitness trade-offs. Within this range, we predict a
linear relationship between the frequency of phenotypes and the frequency of environments,
independent of the shape of the trade-offs.

Keywords: bet hedging, fluctuating environment, generalist, life history, plasticity, polyphenism,
specialist, trade-off.

1. INTRODUCTION

Organisms that inhabit a changeable, unpredictable environment face a difficult adaptive
challenge. In some cases they may evolve to specialize in one particular niche, making up for
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poor performance in some conditions by over-achieving in another. In other cases environ-
mental uncertainty may select for a ‘jack-of-all-trades’, a generalist capable of overcoming
any environmental hurdle but never reaching the peak productivity of a more specialized
type. In this paper, we focus on two different kinds of strategies that can function as
adaptations to environmental uncertainty. A traditional generalist is an individual of a
single, fixed type whose morphology and/or behaviour is reasonably well equipped for any
situation. A bet-hedging strategy, on the other hand, produces a phenotypically hetero-
geneous set of individuals, each of which may develop into one of several specialized types
(Cooper and Kaplan, 1982; Seger and Brockmann, 1987). These two strategies may be viewed as two
different ways of being a generalist: one strategy is employed by individuals, while the other
is employed by genotypes. The fitness set framework introduced by Levins (1962) can be used
to provide a basis for comparing the two kinds of generalists, and build intuition about the
general circumstances giving rise to each.

When environmental uncertainty selects for a bet-hedging strategy, it creates non-genetic
phenotypic diversity in the population. This may lead us to expect some relationship
between the amount of environmental variation and the amount of phenotypic variation
that is created as an adaptation to it. Such a connection has in fact been drawn for the
simplest models, but a more general correspondence has been elusive (Bergstrom and Lachmann,

2004; Kussell and Leibler, 2005). We show here that the connection can be easily generalized when
the phenotypes are described according to their relative fitness contributions in the different
types of environments. These descriptions have a simple graphical interpretation in terms of
Levins’s fitness sets, and may be interpreted as a measure of specialization. Using this
measure, we develop an intuitive understanding of the quantitative relationship between
environmental uncertainty and adaptive generalization.

2. BACKGROUND: LEVINS’S FITNESS SETS AND EVOLUTION
IN AN UNCERTAIN ENVIRONMENT

Whether organisms adapt to environmental uncertainty by becoming specialists or
generalists – or a mixture of both – depends on a number of interacting factors (Levins, 1962;

Wilson and Yoshimura, 1994). First, the trade-off between adaptations to different environmental
conditions may take different forms. Weak trade-offs, which allow intermediate types to
perform fairly well in all conditions, tend to promote the evolution of generalists. Strong
trade-offs, which make intermediate types perform poorly in all conditions, tend to promote
the evolution of specialists. Second, the structure of environmental variation plays a key
role. Environmental change that affects all individuals in the population at once on the
time scale of a generation, like years of drought, favours the evolution of generalists. In
contrast, environmental variation between individuals in a single generation, like random
dispersal into small patches of different habitats, encourages the evolution of specialists.
Although some authors use the terms ‘temporal’ and ‘spatial’ to distinguish these two
kinds of environmental variation, we prefer the more general labels population-level and
individual-level environmental variation.

Levins introduced the paired concepts of the fitness set and the adaptive function as a
way to gain intuition about the way that fitness trade-offs and environmental variation
interact to influence the evolution of specialists and generalists (Fig. 1). Each achievable
phenotype is characterized by its fitness profile over the different environments, and then
plotted on a graph whose axes are the fitness in each environment. The set of all such points
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in fitness space is called the fitness set; the portion of its boundary with negative slope is a
graphical representation of the trade-off between specializing in different environments.
Weak trade-offs create convex fitness sets, while strong trade-offs create concave fitness
sets. The adaptive function describes how fitness in each environment contributes to the
population’s overall reproductive rate. Individual-level environmental variation yields
populations that reproduce according to the arithmetic mean fitness in every generation.

Fig. 1. Levins’s fitness set plots the fitness in each environment of all achievable phenotypes. Its
boundary reflects the fitness trade-off between specializing in different environments. Trade-offs are
described as weak if intermediate types can do fairly well in all environments, or strong if intermediate
types do poorly in all environments. Contour lines of the adaptive function represent points in the
fitness space where the population growth rates are equal. The achievable phenotype that maximizes
the population growth rate is the point in the fitness set that lies on the highest contour. Specialists
are favoured when trade-offs are strong and environmental variation occurs at the individual level;
generalists are favoured when trade-offs are weak and variation occurs at the population level. The
extended fitness set is created by considering in addition all mixtures of phenotypes. Allowing a
mixed-phenotype population can increase the reproductive rate only when trade-offs are strong and
environmental variation occurs at the population level (lower left).
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Population-level environmental variation yields populations that vary in their productivity
from generation to generation. Over the long term, such populations reproduce according
to their geometric mean fitness (Dempster, 1955; Levins, 1962; Cohen, 1966). The fitness set and the
adaptive function can be used together to identify a phenotype that is optimal – but only in
the sense that it maximizes the population’s reproductive rate. (We will return to this point
later.)

One interesting result, which is easy to understand using Levins’s framework, concerns
populations containing a mixture of phenotypes. The population’s reproductive rate
depends on the average fitness of the mixed population in each environment. The fitness
profile of the mixed population is therefore a linear combination of the fitness profiles of
the phenotypes that make up the population. The set of points in fitness space that can be
achieved by a mixed population is known as the extended fitness set. It consists of all linear
combinations of the original fitness set, which considers only single phenotypes (Fig. 1). In
mathematical terminology, the extended fitness set is the convex hull of the fitness set.
Levins distinguishes two qualitatively different cases. Where trade-offs are weak, the
extended fitness set does not create any new points (Fig. 1, right column). Where trade-offs
are strong, however, the extended fitness set does expand the boundaries. Points along
this new boundary represent fitness profiles that can only be achieved with a mixture of
phenotypes (Fig. 1, left column). When environmental uncertainty occurs at the population
level, these points will never be optimal. The contours of the adaptive function and the new
boundary of the extended fitness set are both linear (Fig. 1, upper left). However, when
environmental uncertainty occurs at the population level, the contours of the adaptive
function are no longer linear. In this case, a point along the linear edge of the extended
fitness set may be better than any point in the fitness set (Fig. 1, lower left).

Levins initially suggested that population polymorphism could therefore be an adapta-
tion to population-level environmental uncertainty, when being a generalist is not efficient –
but some care is necessary in the interpretation. If, by population polymorphism, we mean
genetic polymorphism, then we must consider not only the fitness of the population com-
pared with other populations, but also the way that natural selection within the population
may act to change the mixture. Levins addressed exactly this question using a simple
Mendelian trait in a later paper (Levins, 1964). He also suggested that long-term selection in a
fluctuating environment might act on the genetic architecture to reduce the short-term
effects of selection, thus maintaining some amount of genetic variation (Levins, 1965, 1968).
Further work on the maintenance of genetic polymorphism as an adaptation to environ-
mental uncertainty suggests that it is possible under certain conditions (Haldane and Jayakar, 1962;

Gillespie, 1973; Sasaki and Ellner, 1995; Leimar, 2005). However, since natural selection does not generally
maximize the geometric mean population fitness, Levins’s fitness set framework is poorly
suited to this kind of analysis (Seger and Brockmann, 1987; Godfrey-Smith, 1996).

On the other hand, phenotypic diversity in a population need not reflect genetic poly-
morphism. The notion of a stochastic developmental switch, which randomly produces one
of several possible phenotypes, has long been recognized as a potential mechanism for
producing adaptive variation (e.g. Levins, 1968), and is central to the biological theory of bet-
hedging. According to this theory, organisms may adapt to population-level uncertainty in
their environment by randomly developing into one of several alternative phenotypes (Cohen,

1966; Cooper and Kaplan, 1982). Such a genotype may be thought of as a ‘developmental general-
ist’, because it produces a lineage that survives well in a variety of circumstances; depending
on how strong trade-offs are, it may outcompete a phenotypic generalist (Wilson and Yoshimura,
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1994). Because each point within the extended fitness set may be achieved by a single
genotype that produces a mixture of phenotypes, and the genotype that produces the
fastest-growing lineage is likely to outcompete all others, Levins’s diagrams are perfectly
suited to distinguishing which of the two kinds of generalist is more efficient (Seger and

Brockmann, 1987; Godfrey-Smith, 1996).

3. A MODEL OF THE EVOLUTION OF GENERALISTS

Consider a population of organisms with non-overlapping generations. In each generation,
the environmental state k is drawn from some fixed probability distribution pk, independ-
ently of the state in previous years. Each individual has a phenotype x that is fixed during
development, and belongs to a continuous set of achievable phenotypes. Reproductive
success depends both on the phenotype of the individual and the state of the environment.
There may be individual-level variation in reproductive success within generations, but the
average reproductive success of a phenotype, fxk, must be consistent between generations
with the same environmental state.

This is the classical model of evolution in fluctuating environments, where the phenotype
with the highest geometric mean fitness is most likely to become fixed (e.g. Dempster, 1955;

Levins, 1962; Cohen, 1966). One way to understand why natural selection tends to maximize the
geometric mean in such cases is to look at long sequences of environments, and ask which
genotype will take over the population in most of these sequences. Under the assumptions
of our model, the genotype that will win in any particular sequence of environments is the
one that had the largest growth rate. For a simple fluctuating environment, the strong law of
large numbers implies that in almost all long sequences, each environmental condition is
experienced approximately in proportion to its probability of occurring. In such sequences
of environments, the expected long-term growth rate for a lineage expressing phenotype x is
the growth rate averaged over the environmental probabilities:

r(x) = !
k

pk log fxk, (1)

which is the log of the geometric mean fitness. A natural extension to this approach also
considers bet-hedging genotypes, which produce offspring with phenotypes given by some
probability distribution gx. Once a lineage is common enough, its average reproductive
success is simply the weighted average reproductive success of the phenotypes it produces,
so the long-term growth rate is given by:

r(g) = !
k

pk log !
x

gx fxk (2)

(e.g. Seger and Brockmann, 1987; Yoshimura and Clark, 1991). The genotype that will be observed most of
the time is the one that maximizes r – since its growth rate, over almost all sequences of
environments, is larger than that of any other strategy.

In general, natural selection need not lead to optimization of the long-term growth rate.
The model includes a number of important simplifying assumptions. In Section 4, we
discuss the realism of these assumptions and the consequences of relaxing them.
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3.1. The region of strong trade-offs

Given a model of the fitness trade-offs, we can use Levins’s fitness set diagram to graphic-
ally solve for the genotype with the highest long-term growth rate. It is easy to see that when
trade-offs are weak, the best response to population-level variation will always be a single
generalist phenotype. However, when trade-offs are strong, the situation is a little more
complicated. A concave fitness set may show strong trade-offs only along part of its bound-
ary. In this case, bet-hedging will be an optimal strategy only when the optimal single
phenotype lies in a region of strong trade-offs. To illustrate, we begin with a simple example
inspired by the ecology of amphibian metamorphosis.

Example. Frogs laying eggs in temporary ponds face a trade-off imposed by their time
to metamorphosis. Late-metamorphosing tadpoles become larger frogs with higher fitness,
but confront a higher risk that the pond will dry up before metamorphosis is complete.
In our simple model, tadpoles are capable of metamorphosis beginning at some threshold
number of days after hatching. After this, they grow linearly with the time to meta-
morphosis. However, if the pond dries up before metamorphosis, the tadpole dies. Each frog
lays its eggs in a different pond. In dry years, the time to drying of individual ponds
is independent and normally distributed. In wet years, the time to drying of individual
ponds is also independent and normally distributed, but with a different mean and standard
deviation. From this we can calculate the expected fitness of a tadpole metamorphosing
after a certain number of days, in a wet or dry year (Fig. 2; see Appendix A for details of
the model).

The region of strong trade-offs is the part of the fitness set that makes it concave (Fig. 3).
Since the adaptive function increases monotonically with fitness in each environment, the
best pure strategy must lie on the boundary of the fitness set. Similarly, the best bet-hedging
strategy must lie on the boundary of the extended fitness set. Whether a single generalist
phenotype or a bet-hedging genotype is optimal depends on the overlap of these boundar-
ies. We call the part where they overlap the region of weak trade-offs. The part where they
do not overlap is the region of strong trade-offs; in this area, bet-hedging can improve upon
any single phenotype. In particular, if the optimal strategy is a bet-hedging one, it will
consist of a mixture of the phenotypes at the endpoints of the region of strong trade-offs.

We would first like to determine then, when bet-hedging is optimal, and if it is optimal,
what is the best mixture of phenotypes. These questions can be answered for any specific
model using the traditional fitness set approach, by identifying the point of intersection
between the extended fitness set and the highest contour of the adaptive function (Levins, 1968;

Yoshimura and Jansen, 1996). However, a much more general and intuitive approach is possible
using the measure introduced in the next section.

3.2. A quantitative measure of specialization in different environments

When each phenotype can survive in one environment only, bet-hedging is the only way to
survive: a lineage of any single phenotype is sure to go extinct. The optimal bet-hedging
mixture of such phenotypes – regardless of fitness differences in different environments – is
to match the probability of environments. For example, Cohen’s (1966) simplest model of
seed germination, in which a germinating seed can only survive in good years, showed that
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the optimal germination fraction is equal to the probability of a good year. The generality
of this result is well known in information theory (Kelly, 1956; Cover and Thomas, 1991), but has only
more recently been applied in a biological context (Bergstrom and Lachmann, 2004; Kussell and Leibler,

2005). This case provides an important reference point, and a good basis for our measure of
specialization, precisely because it is so well understood. We will show that our measure can
then easily be extended to treat the more general case, where phenotypes can survive in
several environments.

Fig. 2. Levins’s fitness set, lower right, is a parametric plot of the fitness of each phenotype in several
environments. Shown on the upper left is a graph of average fitness in two kinds of years, for tadpoles
that metamorphose at different ages. Error bars indicate the mean and standard deviation of time to
drying. To illustrate how the parametric plot is derived, we show it alongside individual plots of fitness
in each kind of year. Consider the phenotype of metamorphosis at 30 days. Its fitness in wet years,
shown in the lower left plot, becomes the y coordinate in the fitness set. Its fitness in dry years, shown
in the upper right plot, becomes the x coordinate in the fitness set. When this is done for every
phenotype, a curve is traced out in fitness space. This is called the ‘fitness set’.
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Fig. 3

Fig. 4
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We define a phenotype that survives in only one environment as completely specialized
in that environment. Furthermore, a bet-hedging genotype that produces a mixture of
completely specialized phenotypes is specialized in each environment according to that
mixture. Consider a genotype g that allocates a fraction gk of its offspring to a phenotype
that is completely specialized in environment k. Then the fitness of that genotype in
environment k is fgk = gkdk, where dk is the fitness of the completely specialized type in its
environment. We say that the degree of specialization of the genotype in environment k is gk,
because that is the proportion of its reproductive effort that is invested in environment k.
Note that, according to the result cited above, the optimal genotype should specialize in
each environment according to its frequency.

The idea that a bet-hedging genotype divides its reproductive effort among environments
can be extended to include phenotypes that survive in multiple environments. To illustrate
how, we return to the example of amphibian metamorphosis. In the previous section, we
saw that any optimal bet-hedging strategy must be a mixture of just two types: a slow-
metamorphosing tadpole (at 48 days) and a fast-metamorphosing tadpole (at 34 days).
Such genotypes lie along a straight line on the boundary of the extended fitness set (Fig. 3).
Note, however, that this line is a subsection of a longer line that extends all the way to both
axes (Fig. 4). This longer line represents all bet-hedging strategies that combine two
completely specialized types: the slow-metamorphosing type, which has fitness 2.42 in wet
years and fitness 0 in dry years, and another type that has fitness 2.94 in dry years and fitness
0 in wet years. Since any particular tadpole would do better in a wet year than a dry one, it is

Fig. 3. Levins’s extended fitness set consists of all points in the fitness set, plus all linear combinations
of those points. The boundaries of this set reflect the trade-offs in the system. Until metamorphosis at
32 days, fitness increases in both kinds of years, so there is no trade-off at all. Between 32 and 48 days,
fitness in dry years decreases while fitness in wet years increases. This region of trade-offs can be
divided into two parts. Between 34 and 48 days, the boundary of the extended fitness set goes beyond
the boundary of the fitness set. That means that if the best pure strategy lies somewhere in this range,
a mixed strategy that combines tadpoles metamorphosing at 34 and 48 days would do even better.
This is called the region of strong trade-offs. Between 32 and 34 days, the boundary of the fitness set
and the extended fitness set overlap. If the best pure strategy lies somewhere in this range – the region
of weak trade-offs – no mixed strategy can be an improvement.

Fig. 4. An optimal bet-hedging strategy matches its level of specialization in each environment to
the frequency of that environment. In the left panel, we show how specialization levels for any
bet-hedging mixture of two phenotypes can be calculated. The line between the two phenotypes
plotted in fitness space is extrapolated to the axes. This defines a bet-hedging strategy that combines
two perfectly specialized phenotypes. The best mixture of perfectly specialized phenotypes matches
the frequency of different environments. However, in the example shown it is impossible to be
perfectly specialized in dry years. Still, some of the same results can be achieved by using a mixture of
the original phenotypes. In the right panel, we plot the best bet-hedging mixture of metamorphosis at
48 days and at 34 days, as a function of the percentage of dry years. The slope of this line reflects the
sensitivity of the optimal strategy to changes in the environmental probabilities. The right-hand axis
indicates what mixture of the two types attains the optimal level of specialization, while the left-hand
axis indicates the average number of days to metamorphosis. We also show the best single-phenotype
strategy, in days to metamorphosis. From 0 to 38% dry years, bet-hedging is better than the best
single-phenotype strategy. Above this, bet-hedging cannot achieve the optimal level of specialization,
so the optimal strategy is to produce a single phenotype.
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impossible to be completely specialized in dry years – the second phenotype cannot actually
be achieved. However, we can still ask, if it were achievable, what would be the optimal
mixture of these two completely specialized types? We know the answer must be to produce
dry-year specialists as often as there are dry years, and wet-year specialists as often as there
are wet years. If that point lies along the subsection of the line that can be produced
by combining slow- and fast-metamorphosing tadpoles, then the optimal allocation of
reproductive effort – matching the environmental frequencies – can still be achieved.

We therefore define the degree of specialization of a bet-hedging genotype in each
environment in terms of the mixture of completely specialized types to which it corre-
sponds. Consider a bet-hedging genotype g that combines several phenotypes that are not
completely specialized. Suppose that each of those phenotypes has a fitness profile that can
be represented as a different mixture of just one set of completely specialized phenotypes:

fxk = sxkdk . (3)

Any bet-hedging mixture of the original phenotypes is then also equivalent to a mixture of
that same set of completely specialized phenotypes:

!
x

gx fxk = sgkdk, (4)

where

sgk = !
x

gxsxk. (5)

We define the degree of specialization of the bet-hedging genotype in terms of this mixture,
sgk. Haccou and Iwasa (1995) note that, if each fitness can be written as a product sxkdk as in
equation (3), then the optimal distribution of types g*x is the one that achieves

!
k

g*xsxk = pk , (6)

where pk is the probability distribution over environments. Our definition of specialization
in terms of an equivalent mixture of completely specialized phenotypes is therefore particu-
larly convenient, because it means the right amount of specialization in any environment,
sg*k, is simply the probability of that environment.

It remains to be shown when and how the appropriate decomposition of the fitness, as in
equation (3), can be accomplished. When there are just two or three different kinds of
environments, this is easy to visualize using Levins’s fitness sets, as illustrated in Fig. 4. We
use the region of strong trade-offs to identify the phenotypes that could be used in an
optimal bet-hedging strategy. The number of phenotypes in that set is limited by the number
of distinct environments, and will equal the number of environments as long as there are
strong fitness trade-offs between all environments. In that case, the specialization levels of
the individual phenotypes sxk are uniquely defined, and can be found according to the
method described in Appendix B.

Looking at genotypes in terms of their specialization in different environments provides
the tools we need to answer the questions posed at the end of the last section: when is bet-
hedging adaptive, and if it is adaptive, how much is optimal? As shown in Fig. 4 (left panel),
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a tadpole that metamorphoses at 48 days is completely specialized in wet years, while a
tadpole that metamorphoses at 32 days is only 38% specialized in dry years. Therefore, if
dry years occur more than 38% of the time, a bet-hedging strategy using only these two
types could not be specialized enough in dry years. If dry years occur less often than this,
then the optimal strategy is the combination of the two phenotypes that matches the degree
of specialization in dry years to the probability of dry years (Fig. 4, right panel). As dry
years increase in probability from 0% to 38%, the optimal mixture of types changes from all
metamorphosing at 48 days to all metamorphosing at 34 days. That means that a fairly
small increase in the percentage of dry years corresponds to a larger increase in the fast-
metamorphosing type.

In general, bet-hedging with phenotypes that are not completely specialized in any
environment can produce only a limited subset of possible specialization levels, defined by
the specialization levels of the phenotypes. When environmental probabilities lie outside
this range, a single, generalist phenotype will be optimal. Within this range, on the other
hand, the optimal amount of phenotypic variation changes linearly, taking on all possible
values, as environmental probabilities change (see equation 6). The slope of this linear
relationship, reflecting the sensitivity of the optimal bet-hedging mixture to the environ-
mental probabilities, depends only on the size of the region of strong trade-offs. The general
form of the relationship between the amount of adaptive diversification and the amount of
environmental uncertainty that drives it is therefore quite simple and intuitive.

An additional advantage of describing genotypes in terms of their specialization in dif-
ferent environments is that it allows for a simple description of the strength of selection for
a bet-hedging genotype, when it is optimal. We examine the difference between the optimal
growth rate, which uses the bet-hedging genotype g*, and the current long-term growth rate
under the bet-hedging genotype g:

r(g*) − r(g) = !
k

pk log
Σxg*x fxk

Σxgx fxk

. (7)

Rewriting the fitnesses as in equation (3), and substituting in equations (4) and (6), we find

r(g*) − r(g) = !
k

pk log
pk

sgk

, (8)

which is the Kullback-Leibler divergence between the environmental probabilities pk and
the genotypic specialization level sgk – the environmental probabilities for which the current
genotype g would be optimally adapted (compare Haccou and Iwasa, 1995; Kussell and Leibler, 2005). In this
sense, the amount of environmental uncertainty indicates how much of a generalist an
optimally adapted genotype should be; the farther away a genotype is from this ideal, the
stronger the selection to improve. Furthermore, selection for moving from the best single-
phenotype strategy to any bet-hedging strategy cannot exceed the Kullback-Leibler
divergence between the specialization levels of the component phenotypes. If there are
strong trade-offs only in a small portion of the fitness set, there will be only a narrow range
of environmental uncertainty in which bet-hedging is optimal. Furthermore, selection
for adopting a bet-hedging strategy will be strongly limited, because the best phenotypic
generalist will do almost as well as the optimal bet-hedging genotype.
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3.3 The effect of individual-level risk

Until now, we have addressed only the selective effects of population-level risk, because this
is the only kind that can lead to adaptive phenotypic diversification. Now we ask, how does
individual-level risk affect the strength of selection for bet-hedging that may be imposed by
population-level risk? The method of dividing the variance in average genotypic fitness
over generations into the variance in individual fitness and the correlation in fitness between
individuals, introduced by Frank and Slatkin (1990), provides some insight into this question.
They represent increasing individual-level uncertainty by decreasing correlations in fitness
between individuals of the same genotype. This decreases the variance in average genotypic
fitness, effectively decreasing the amount of population-level uncertainty. We may therefore
expect that adding individual-level risk to our model will dampen the effects of population-
level risk.

Our example of amphibian metamorphosis contains environmental risk at two different
levels: at the population level, because dry years cause the ponds to dry up earlier on
average, and at the individual level, because within each year the time to drying of indi-
vidual ponds varies according to a normal distribution. In Levins’s original formulation,
such combinations of risk at two different levels were represented by adjusting the adaptive
function (Levins, 1962). However, we have instead included the individual-level risk in the
fitness set: each phenotype is represented by a vector consisting of its average fitness in
each environment. This is possible because, given the type of year, the ponds dry up
independently of one another. Therefore, the variance over different years of the average
genotypic fitness (a sample mean) will be negligible for large populations. In the example,
individual-level uncertainty in the time to drying makes specialized types more generalist,
by decreasing average fitness in the most favoured circumstances and increasing it in the
least favoured ones. In the process, it reduces the size of the region of strong trade-offs,
putting stricter and stricter limits on the amount of population-level uncertainty necessary
to induce adaptive phenotypic variation. When we increase the variation within years
enough that there is significant overlap in drying time between wet and dry years, the region
of strong trade-offs disappears completely – making phenotypic variation non-adaptive
(Fig. 5).

Our approach has the advantage of singling out population-level uncertainty as the
driving force in the evolution of adaptive variation: it sets a target for the amount of
specialization in different environments. Individual-level uncertainty may then alter the
circumstances under which diversification is favoured, by changing the shape of the fitness
set. Individual-level environmental risk could affect the fitness profile of different pheno-
types in many ways. Its impact depends on how it affects the average performance of
different types. In our example, within-year variation in time to drying of different ponds
makes the average fitness of similar types more similar (the slopes in the left panel of Fig. 5
are less steep than in the corresponding panel in Fig. 2). This effectively reduces the size of
the region of strong trade-offs, making intermediate types better generalists, and making
bet-hedging less important. On the other hand, if individual-level stochasticity affected only
the variance in fitness of individual types, not the average fitness, it would not change the
fitness set at all. Still, to the extent that individual-level uncertainty does make phenotypes
more generalist, it will make bet-hedging both less likely to be adaptive, and less strongly
selected for (see Section 3.2).
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3.4. The effect of developmental plasticity costs

Our representation of the growth rate of a lineage stemming from a bet-hedging genotype
(see equation 2) implicitly assumes that there is no cost to plasticity. This assumption is
important for our results, because it means that the fitness profile of a bet-hedging genotype
is a simple linear combination of the fitness profiles of the phenotypes it produces. However,
some kinds of cost can still be represented within our framework. If there is a fixed cost to
being able to produce more than one phenotype, regardless of the proportions actually
produced, the overall shape of the extended fitness set will not change. Consider a cost of
plasticity that is proportional to an individual’s realized fitness. This simply scales the
extended fitness set by some factor (Fig. 6, left panel). The boundary of the extended fitness
set will still be linear wherever there are strong trade-offs, and will still correspond to the
same mixed strategies. What changes is the comparison between the best pure strategies and
the best mixed strategies. Mixed strategies are optimal over a smaller range of environ-
mental uncertainties, and the range of optimal mixtures decreases as well. The linear
relationship between the environmental frequencies and the optimal mixture of phenotypes
still holds (Fig. 6, right panel).

Another possibility is that the cost of plasticity could depend on the amount of pheno-
typic diversity it generates. For example, a plastic developmental pathway might tend to
build the less commonly produced phenotype with less accuracy, and thus lower average
fitness. Then a bet-hedging strategy that almost always produces just one phenotype would
incur very little fitness cost, while one that produces two phenotypes in equal proportions
would incur a higher cost. In this case, the boundary of the extended fitness set will no
longer be linear. The graphical method of finding the point on the boundary that maximizes
the adaptive function can still be used. However, the most important feature of our frame-
work – the direct relationship between environmental probabilities and phenotypic diversity
– is lost.

What does this mean for the applicability of our framework in natural systems? The
answer depends on how common costs to plasticity are, and how those costs are related to
the amount of phenotypic diversity that is created. To our knowledge, no-one has yet
empirically measured cost in a system where stochastic developmental plasticity has been
demonstrated. Most empirical studies of the costs of plasticity have focused instead on
adaptive plasticity in response to predictive cues (see DeWitt et al., 1998, for a review). Much of
the cost of plasticity in these cases may be related to the ability to detect and respond
appropriately to predictive cues. Such costs do not apply to stochastic developmental plas-
ticity. However, it may still be more difficult for an organism to produce, along alternative
developmental pathways, the same phenotypes that developmentally canalized organisms
could produce. This difficulty may be due to limits on the range of plastic development
or increased developmental instability. Empirical tests for these kinds of limitations to
plasticity so far show no support for any association between increased plasticity and
decreased phenotypic range or precision (e.g. DeWitt, 1998; Van Kleunen et al., 2000; Relyea, 2002). This
suggests that the costs to stochastic developmental plasticity may be fairly limited, and not
related to the amount of stochasticity. These are precisely the conditions in which our
model is most useful.
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Fig. 5

Fig. 6
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4. GENERALITY OF THE MODEL

A more formal analysis of the effects of stochastic environments on natural selection would
include explicit models of population dynamics. Our assumption that the genotype with the
highest average log fitness is most likely to fix in the population depends on a number of key
simplifications in the model. We consider each of these simplifications in turn.

First, we have made the assumption that the long-term growth rate of a lineage is a good
predictor for the outcome of a competition between two genotypes. This is clearly true
if both lineages are growing exponentially and completely independent of one another,
but such a scenario is not biologically plausible. In most cases, there will be some kind
of density-dependent regulation of growth. We would like to know which strategy is likely
to outcompete all others, in the long term. This depends on the way that the relative
proportions of different strategies in the population change over time. Consider some form
of density-dependent population regulation that is equally likely to affect all individuals,
regardless of strategy or phenotype. This would maintain realistic population sizes, but
would not affect the relative proportions of different strategies. Therefore, the strategy with
the highest long-term growth rate would still be most likely to outcompete the others
(McNamara, 1995; Grafen, 1999).

On the other hand, some kinds of density-dependent population regulation can affect the
proportions of different types of strategies. For example, individuals might specialize in the
use of different limiting resources, whose availability varies from generation to generation.
Then an individual’s reproductive fitness will depend not only on its own phenotype, the
environment, and the population size, but also on the frequency of other phenotypes in the
population. This is a classic case of frequency-dependent selection, whose outcome cannot
generally be predicted by principles of optimization. The concept of an evolutionarily stable
strategy – a genotype that, once common, resists invasion from potential mutant types – can

Fig. 5. Individual-level uncertainty reduces selection for phenotypic diversification by changing the
shape of the fitness set. The left panel shows fitness as a function of phenotype; the right panel shows
the resulting fitness set and extended fitness set. Compared with the parameters used in Figs. 2 and 3,
the only difference here is a larger standard deviation in time to drying, in both kinds of years. This
reduces the risk associated with being caught in the wrong kind of year, creating only a weak trade-off
between specializing in wet and dry years over the entire range. In this situation, no matter the level of
population-level risk, an individual-level generalist will always be favoured.

Fig. 6. A fixed cost to plasticity reduces the range of environmental uncertainty in which bet-hedging
is optimal. As in Fig. 4, we use the extended fitness set to calculate the degree of specialization in dry
years for a range of bet-hedging strategies. Because the cost is proportional to fitness, the shape of the
extended fitness set does not change; it is merely scaled down. The phenotypes that are used to make
all optimal bet-hedging mixtures are again metamorphosis at 34 and 48 days, and the specialization
levels of each do not change. This means that the best bet-hedging strategy for any particular
percentage of dry years, shown at right, also does not change. Similarly, the best single-phenotype
strategy remains the same. What does change, however, is the comparison between single-phenotype
strategies and bet-hedging strategies. The cost of bet-hedging means that the range of environmental
uncertainty in which the best bet-hedging strategy outperforms the best single phenotype gets smaller:
0–25% dry years instead of 0–38%. This corresponds to mixtures where less than 66% of tadpoles
metamorphose at 34 days. Mixtures outside this range are not worth the cost of plasticity.
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then be a useful tool for identifying adaptive strategies (Maynard Smith, 1982). In the context of
fluctuating environments, the ability of a mutant genotype to successfully invade a resident
is predicted by the long-term growth rate of the mutant in a population of the resident
(Metz et al., 1992; Yoshimura and Jansen, 1996). Our framework can still be used to predict what would
be the best bet-hedging strategy, for a particular distribution of phenotypes in the resident
population. If this optimal strategy also produces the given distribution of phenotypes,
then it is at least an equilibrium strategy, although it need not be stable.

The second important assumption is our use of the log fitness, averaged over different
environmental states, as a proxy for the long-term growth rate of a lineage (see equation 1).
Whether this is a good approximation depends crucially on how the environment varies on
several scales: within individuals, between individuals in the same generation, and between
generations.

Our assumption that individuals live and reproduce in only one generation, and that
each generation is characterized by a single environmental state, ignores the possibility of
environmental variation within an individual’s lifetime. In general, the effect of such
within-individual variation is to reduce the impact of between-generation variation,
because individual lifetime reproductive success becomes less variable (Frank and Slatkin, 1990;

Sasaki and Ellner, 1995). In fact, organisms may in some cases evolve to survive and reproduce
over multiple seasons as a response to an environment that fluctuates from generation to
generation. Evolution of such a life-history strategy may therefore sometimes be seen as a
kind of ‘risk spreading’ in its own right (Murphy, 1968; Goodman, 1984).

Variation between individuals in the same generation need not affect the long-term
growth rate, as long as the average fitness of each phenotype within each environmental
state does not vary much. This will be true as long as the number of individuals of
each phenotype is fairly large, and the reproductive success of different individuals is
independent, conditional on the environmental state (Frank and Slatkin, 1990). We have included
individual-level variation of exactly this sort in our example (see Section 3.3).

In this study, we have focused on the evolutionary impact of environmental variation
between generations. We have made the important simplification that the environmental
conditions in each generation do not depend on previous environmental history. In such
cases, the asymptotic growth rate of a lineage simplifies to its average log fitness over
generations. However, this simplification continues to hold even in more complicated
scenarios: as long as the population is unstructured, and the environmental states constitute
an ergodic process, the asymptotic growth rate is the log fitness of the lineage, averaged over
the stationary distribution of environmental states (Tuljapurkar, 1990).

5. DISCUSSION

Variable life-history strategies have been studied as a potential adaptation to fluctuating
environments in a wide variety of biological systems. The best-known example is delayed
germination in desert annual plants. This was the inspiration for Cohen’s (1966) model, and
has spawned a series of follow-ups (e.g. Philippi, 1993; Clauss and Venable, 2000; Evans et al., 2007; Venable,

2007). A similar phenomenon – an overwinter diapause – is observed in many insects and
crustaceans (Saiah and Perrin, 1990; Bradford and Roff, 1997; Danforth, 1999; Hopper, 1999; Menu et al., 2000; Philippi

et al., 2001). A highly variable time to metamorphosis, as described in our example, has
been observed in some anurans breeding in temporary pools (Lane and Mahony, 2002; Morey and

Reznick, 2004). In fish and amphibians, the trade-off between egg size and egg number may
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make variation in egg size an adaptation to environmental uncertainty (Capinera, 1979; Crump,

1981; Kaplan and Cooper, 1984; Koops et al., 2003). For organisms that switch between sexual and
asexual modes of reproduction, like aphids and some plants, the timing of that switch may
vary in response to uncertainty (Berg and Redbo-Torstensson, 1998; Halkett et al., 2004). Bacteria are
rapidly becoming an important model system for the study of adaptive non-genetic pheno-
typic diversity, in part because the regulatory mechanisms underlying the heterogeneity are
particularly amenable to study (for reviews, see Avery, 2006; Smits et al., 2006). For example, Escherichia
coli periodically exposed to antibiotics switches stochastically between a fast-growing, anti-
biotic-sensitive type and a slow-growing, antibiotic-resistant type; the rate of switching
varies between strains and may be adapted for different frequencies of antibiotics exposure
(Kussell and Leibler, 2005). Finally, in a few systems it is argued that a single, low-risk life-history
strategy is a better adaptation to fluctuating environments than phenotypic diversity would
be (Boyce and Perrins, 1987; Simons and Johnston, 2003; Einum and Fleming, 2004; Hassall et al., 2006). This is
sometimes called conservative bet-hedging, in contrast to diversified bet-hedging, which
uses a variety of phenotypes (Seger and Brockmann, 1987; Philippi and Seger, 1989).

Empirical studies of life-history evolution in response to environmental uncertainty use
theory to make testable predictions in a number of ways. One approach is to show that the
observed strategy maximizes the geometric mean fitness instead of the arithmetic mean
fitness (Boyce and Perrins, 1987; Philippi et al., 2001). The difficulty with such quantitative pre-
dictions is that they are often quite sensitive to errors in observed parameters of the model,
such as the frequency of different kinds of environments. Instead, most studies test qualita-
tive predictions. For example, if it can be shown that a mixture of phenotypes performs
better in the long term than any single phenotype, observed variation could be an adapta-
tion to uncertainty (Saiah and Perrin, 1990; Menu et al., 2000; Evans et al., 2007). Stronger evidence is
gained by comparing several populations or species with different amounts of uncertainty
about the environment. If the amount of phenotypic diversity observed varies with the
environmental risk as predicted by theory, that diversity is likely to be adaptive (Philippi, 1993;

Clauss and Venable, 2000; Koops et al., 2003; Halkett et al., 2004; Venable, 2007).

The framework presented here can be used to make quantitative predictions about what
phenotype or mixture of phenotypes would be best adapted to a particular set of condi-
tions. To use it, a realistic, data-driven model of how different phenotypes fare in different
environments is needed, and an accurate assessment of the frequency of different kinds of
environments over the long term must be made. Then the procedure illustrated with the
example of frog metamorphosis can be followed to predict the optimal response. While
similar quantitative predictions could also be made without our framework – via numerical
optimization or computer simulation – our graphical method of analysis provides a clearer
picture of why bet-hedging may or may not be favoured in any particular system. If
bet-hedging is not adaptive, it could be because the region of strong trade-offs is so small
that bet-hedging would almost never be adaptive. On the other hand, it might be because
the environmental frequencies just happen to lie outside the appropriate range. Another
reason for preferring our approach is that it gives a comprehensive picture of how sensitive
the optimal strategy is to measurement errors in various parameters of the model. For
example, small changes in the fitness functions can change strong trade-offs into weak
trade-offs (compare Figs. 3 and 5), going from a situation in which bet-hedging is often
favoured to a situation where it is never favoured.

Our framework generates several novel qualitative predictions that could be tested using a
comparative approach. The first is that the range of environmental uncertainty in which
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bet-hedging is adaptive is limited by the size of the region of strong trade-offs (see Fig. 4).
Other models have indicated that bet-hedging is only adaptive when the variance in which
phenotype is optimal exceeds a certain threshold value (Slatkin and Lande, 1976; Bull, 1987), suggest-
ing that a minimal amount of environmental variance is necessary. Haccou and Iwasa (1995)

note that this minimal variance threshold depends on how generalist the phenotypes are,
and calculate it for several specific functions describing the relationship between phenotype,
environment, and fitness. Our result is more general, because it is independent of the
particular form of the fitness function. It is also more explicit, because it describes the
environmental probability distributions themselves rather than simply the variance of those
distributions. The second prediction is that the range of potentially optimal bet-hedging
strategies is affected by the cost of plasticity. As long as there is no cost to plasticity, any
given mixture of the right phenotypes can be optimal, for some particular amount of
environmental uncertainty (see Fig. 4, right panel). On the other hand, if there is a cost to
plasticity, some mixtures of the right phenotypes will never be optimal under any level of
environmental uncertainty (see Fig. 6, right panel). Finally, we show that there is a linear
relationship between the environmental frequencies and the optimal bet-hedging mixture of
phenotypes. How sensitive the optimal mixture is to changes in environmental frequencies
depends on how big the range of potentially optimal bet-hedging strategies is, relative to the
range of environmental frequencies in which bet-hedging is optimal. That means that if the
region of strong trade-offs is small – say, making bet-hedging optimal only in the range
from 50 to 52% dry years – even a tiny change in the environmental probabilities can have a
large impact on the optimal mixture of phenotypes.

The idea that random phenotypic variation can lessen the negative impact of environ-
mental stochasticity is often explained in terms of investment in the stock market. In a
well-crafted stock portfolio, high-risk, high-return stocks are combined with low-risk, low-
return stocks in a way that maximizes the expected rate of return. Similarly, bet-hedging
genotypes often produce a combination of two life-history strategies, one with high
expected fitness but high risk, and another with lower expected fitness and lower risk. Our
framework builds upon this analogy. What we call a completely specialized phenotype
is completely invested in one particular environment; in all other environments, that
individual is counted as a total loss. Any phenotype that is not completely specialized,
however, is effectively invested in several different environments at once. Its proportional
investment in different environments is defined by comparing the relative fitness of different
types. Bet-hedging is a way of fine-tuning the total investment in different environments, by
producing a variety of offspring whose average specialization level matches the probabilities
of the different kinds of environments.

Two important factors in the evolution of specialists and generalists are left for future
exploration. One is the effect of competition for resources, which can promote the evolution
of within-species polymorphism in resource use (see Skúlason and Smith, 1995, for a review).
Examples of this are widespread in birds, amphibians, and fish and may arise through
genetic divergence (e.g. Smith, 1993) or condition-dependent plasticity (e.g. Frankino and Pfennig, 2001).
This mechanism for the generation of adaptive variation is driven by frequency-dependent
selection, and can act independently of the kind of population-level environmental
uncertainty we have considered here. As discussed in Section 4, our model cannot capture
the full picture when there is frequency-dependent selection. However, recent work
has extended the use of the fitness set into scenarios including frequency dependence
(de Mazancourt and Dieckmann, 2004; Rueffler et al., 2004). Such an approach might be a useful extension
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for our model. Another exciting direction will be to consider predictive cues that can be
used to direct phenotypic plasticity. For example, some tadpoles react to decreasing water
levels in their pond by accelerating development (Denver et al., 1998). If the cues do not predict
the environment perfectly, however, some environmental uncertainty may remain – making
a combination of bet-hedging and plasticity a potentially useful strategy (DeWitt and Langerhans,

2004). Our framework can easily and naturally be extended to explore the relationship
between the amount of information and population-level uncertainty in a cue, and the
optimal balance between predictive and stochastic plasticity.
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APPENDIX A: A MODEL OF FROG METAMORPHOSIS

Here we specify a simple model of frog metamorphosis. A tadpole is capable of meta-
morphosis after a minimum number of days, t. After this point, it grows linearly with slope
k. This determines the size of the frog at metamorphosis, f (x) = k(x − t). However, the
longer it spends as a tadpole, the more likely it is that the pond will dry up before it manages
to metamorphose. In wet years, the time of drying for individual ponds is independent and
distributed normally, with mean µw and standard deviation σw. In dry years, the time
of drying for individual ponds is independent and distributed normally, with mean µd

and standard deviation σd. The probability that a pond does not dry up by time x in
dry years is one minus the cumulative distribution function for the appropriate normal
distribution:

sd(x) = 1 −
1
2 "erf"x − µd

√2σd
# + 1# , (A1)

where erf(x) =
2

√π
$

x

0
e−t 2

dt. A similar expression holds for sw(x). The expected fitness

for a tadpole metamorphosing after x days is fd(x) = k(x − t)sd(x) in a dry year, or
fw(x) = k(x − t)sw(x) in a wet year. For Figs. 2, 3, and 4, we use parameter values t = 16,
k = 1/12, µd = 36, σd = 3, µw = 56, and σw = 6. For Fig. 5, we increase the standard deviations
to σd = 6 and σw = 12.

In Section 3.4, we add a cost of plasticity to the model. Compared with the same
phenotype produced without plasticity, a plastically produced phenotype experiences
a proportional decrease in fitness: f !d(x) = (1 − cd)fd(x) and f !w(x) = (1 − cw)fw(x). In Fig. 6,
we use cd = cw = 0.05. Because the cost is proportional to fitness, the extended fitness set
created by all linear combinations of f !d and f !w, instead of fd and fw, shrinks but does not
change shape. In addition, the extrapolation line used to calculate specialization levels is
stretched without changing the proportions. This property of a fitness-proportional cost
function makes it easier to compare the results with and without cost. However, any other
kind of cost function could be used, as long as it is constant with respect to the frequency of
phenotypes that are produced.

APPENDIX B: CALCULATING SPECIALIZATION LEVELS

Given a set of phenotypes (as defined by the region of strong trade-offs, see Section 3.1)
we would like to write the fitnesses of any mixture in each environment as a mixture of
completely specialized phenotypes, having non-zero fitness in only one environment. This
corresponds to writing the fitness fxk of phenotype x in environment k as a linear
combination of values dk, each of which represents the fitness of a phenotype completely
specialized in environment k. Each coeffcient in these linear combinations, sxk, is the
specialization level of phenotype x in environment k. The problem can be formulated as a
matrix equation:

F = SD , (A2)

where S is a stochastic matrix with rows summing to 1, and D is a diagonal matrix.
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We assume that F is a square matrix, i.e. there are as many phenotypes as environments.
This will be true as long as there are strong fitness trade-offs between specializing in all
possible environments. In this case (barring singularities) both F and D are invertible, so

D−1 = F −1S. (A3)

Multiplying on the right by a column vector of ones, we get the row sums

row sum(D−1) = row sum(F −1) (A4)

because a stochastic matrix has all row sums equal to 1. This defines the diagonal matrix D
completely, allowing the calculation of the specialization in each environment as

S = FD−1. (A5)

This method will yield positive specialization levels as long as the diagonal matrix D has
only positive entries. That is, returning to the graphical viewpoint illustrated for two dimen-
sions in Fig. 4, the hyperplane passing through all phenotypes plotted in fitness space must
intersect each axis at a positive point. This will be true as long as there is a trade-off between
fitness in all different environments, as we have assumed.
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