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ABSTRACT

Mutualisms generate surpluses. Although much of the theoretical literature to date has
focused on mechanisms by which cooperation is stabilized so that these surpluses can
continue to be produced and enjoyed, we address a second question: how will these
surpluses be distributed among the participants? We approach this question from an
evolutionary game theory perspective, exploring how the coevolutionary process
“selects” an equilibrium division of the surplus from among the many possibilities.

We place particular emphasis on the importance of the relative rates of evolution of
the two species. Contrary to the Red Queen hypothesis, which suggests that fast
evolution is favored in coevolutionary interactions, we find that slowly evolving species
are likely to gain a disproportionate fraction of the surplus generated through mutualism.
This occurs because on an evolutionary timescale, slow evolution effectively ties the
hands of a species, allowing it to “commit” to threats and thus “bargain” more effectively
with its partner over the course of the coevolutionary process.

INTRODUCTION

Mutualist partners benefit mutually, by definition. That is to say, when individ-
uals engage in an interspecific mutualism, they enjoy benefits above and be-
yond what they would have enjoyed in the absence of the interaction. (Using
the terminology from economics, we call these benefits the surplus generated
by the mutualism.) Despite the bilaterally advantageous nature of such interac-
tions, the participants in a mutualism rarely have entirely coincident interests.
Each would benefit from altering the arrangement so as to increase its own
share of the surplus at the expense of its partner. How are mutualisms
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established and maintained despite these conflicts? This question can be subdi-
vided: What prevents a mutualism from breaking down as individuals find
ways to exploit their partners over evolutionary time? If mutualism does not
break down, what determines the allocation of the surplus among partners?

What Prevents the Exploitation of Mutualism?

To date, the majority of the empirical and theoretical studies of mutualism evo-
lution have focused on this question. Structurally, the theoretical issue — how
cooperation is maintained despite incentives to defect — is very similar to that
addressed in the extensive literature on the evolution of intraspecific coopera-
tion. Since partners are not conspecifics, however, the kin selection explana-
tions commonly employed to explain intraspecific generosity cannot be
invoked to explain the interspecific analog. Instead, investigators have typi-
cally searched for mechanisms that deter cheating (or at least ameliorate the
cost of being cheated) by more direct means. Such mechanisms include recip-
rocal altruism, partner choice, sanctioning, and by-product mutualism or
pseudoreciprocity. Bergstrom et al. (this volume) provide an overview of these
alternatives. Thus, we will not consider this question in detail here.

HowWill the Benefits of Mutualism Be Divided?

Far less attention has been given to the matter of what happens once the
mutualistic association is somehow stabilized. (Welcome exceptions include
Bowles and Hammerstein [this volume] and some of the “biological markets”
literature, including Bshary and Noë [this volume].) In particular, how will the
benefits from the interaction be allocated among the participants? Though a
mutualistic interaction offers benefits to both species, the two species will obvi-
ously have different interests with respect to the actual division of the surplus:
each would benefit from gaining a larger share.

In some cases, the goods being “traded” are provided in very different curren-
cies and the “exchange rates” between them are essentially set by mechanistic
constraints. In such cases, division of the surplus is straightforward. Cleaning
mutualisms, such as those described by Bshary and Noë (this volume), provide
one of the best examples. In these interactions, the cleaner gets the benefit of a
ready food source, and the “client” gets the benefit of having its parasite load re-
duced. The potential for cheating — cleaners feeding on live tissue or clients
preying on cheaters, for example — adds a degree of extra complexity, as does
competition among clients for cleaners. Nonetheless, if market forces or other
mechanisms do ensure cooperation between a cleaner and a client, the division
of the benefits is relatively straightforward (Bshary and Noë, this volume).

The allocation of benefits, however, is not always so clear, as we can see by
observing the mutualistic association between ants and lycaenid butterfly cater-
pillars (Pierce 1987, 2001). These caterpillars, largely protected by the ants from
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parasitoids (a huge contributor to mortality), enjoy enormous increases in
survivorship to and during pupation (Pierce and Mead 1981; Pierce and Easteal
1986). Consequently, they can afford an extended developmental period, during
which they are able to generate a sugar- and protein-rich exocrine secretion with
which to purchase continued protection at the expense of a reduced rate of
growth (Hill and Pierce 1989; Baylis and Pierce 1992; Pierce et al. 1987). In this
situation, there is no single obvious division of the surplus. In general, then, at
what rate should the lycaenids provision their ant attendants? In addition, how
much should the ants “demand” in return for tending to the caterpillars?

Evolutionary Rate and the Coevolutionary Process

Here, we describe the way in which dynamic evolutionary game theory can be
used to explore how surpluses will be divided among mutualist partners. We
will pay particular attention to the role of evolutionary rate in determining the
properties (in particular, the allocation of benefits) of mutualisms. Partners in
coevolutionary interactions may evolve at different rates for a number of rea-
sons, including differences in generation time, differences in the importance of
the interaction, differences in population size, and differences in the amount of
segregating genetic variation (Dawkins and Krebs 1979).

Theoretical and empirical studies of coevolution have explored the conse-
quences of evolutionary rates and coevolutionary races in substantial detail;
however, the present approach represents something of a departure from these
earlier studies in its emphasis on mutualistic interactions. Most previous analy-
ses have dealt with antagonistic coevolution, such as that between predators and
prey or hosts and parasites. In these situations, species pairs become locked into
“rat races” (Rosenzweig 1973) or “arms races” (Dawkins and Krebs 1979) with
each rushing to evolve the upper hand in the interaction. The end result is a Red
Queen process (Van Valen 1973), in which the two species each have to evolve
rapidly just to keep up with one another. As Lewis Carroll wrote, “it takes all the
running you can do, to keep in the same place.”

Do mutualisms evolve by similar dynamical processes, with species racing to
keep ahead of their partners (Herre et al. 1999)? Is a rapidly evolving species
likely to fare better than a slowly evolving one? Here we describe how these
questions can be addressed using an alternative approach to modeling the evolu-
tion of mutualism (Bergstrom and Lachmann 2003) and summarize new results
which suggest that, in contrast to the Red Queen theory, slower rates of evolu-
tion may lead to favorable outcomes in the evolution of mutualism.

METHODS FOR MODELING MUTUALISM

Game theory is the study of decision making in a social context. As such, game
theory provides a set of tools for analyzing the decision problem that an individ-
ual faces when her fate depends both on her own choices and on the choices of
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others. Traditionally, game theory has focused on identifying Nash (or related)
equilibria: combinations of strategies for each participant such that no partici-
pant can gain from a unilateral change in strategy. Although this approach has
proven to be extremely valuable in biology, many strategic situations or
“games” turn out to have multiple equilibria, and the basic theory does little to
distinguish among them (Samuelson 1997).

Resolving this equilibrium selection problem requires some sort of extension
to the basic Nash equilibrium framework. One of the most successful extensions
derives from the work of Maynard Smith and Price (1973). These authors stud-
ied how evolutionary processes (e.g., evolution by natural selection) would lead
to the selection of certain strategies in populations of game-playing individuals.
In general, this evolutionary game theory approach assumes that a population of
agents play a given game against one another repeatedly.1 The agents change
their strategies at some rate, based on their own past experiences or those of oth-
ers. Strategy change is assumed to be myopic, toward immediate improvement
with no consideration of the long-term consequences. Agents may occasionally
mutate or experiment, trying new strategies at random. Examples of such pro-
cesses include evolution by natural selection in asexual or sexual populations,
cultural transmission systems in which individuals copy successful neighbors,
and learning processes in which individuals alter their strategies in accord with
their previous payoffs.

Among these processes, the replicator dynamics plays a central role, in that
(a) it corresponds to simple deterministic biological model of asexual reproduc-
tion with fitnesses proportional to expected payoffs, (b) it is relatively simple to
analyze, and (c) many other processes can be shown to share with it the same
equilibrium points and stability properties (Samuelson and Zhang 1992;
Cressman 1997), and in some cases, even the same dynamics (Binmore et al.
1995; Schlag 1998). Throughout this chapter, we use the replicator dynamics as
model of evolution by natural selection. However, the aforementioned conver-
gence properties imply that our findings will also pertain to systems in which
strategies change by other processes (e.g., learning) as well.

In many simple coevolutionary interactions, players come from two separate
populations to engage in pairwise interactions. Such circumstances can be mod-
eled using bimatrix games (Weibull 1995; Hofbauer 1996; Hofbauer and
Sigmund 1998), also known as role asymmetric games (Maynard Smith 1982),
in which the two populations have distinct payoff matrices and strategy frequen-
cies. Here, we restrict ourselves to consideration of two-player bimatrix games.
The simplest of these are 2 × 2 games, which can be represented by the follow-
ing payoff matrix:
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models typically focus on how strategies for playing the 1-shot game evolve over time.



L R

U a, e b, f

D c, g d, h

With a bit of arithmetic manipulation, we can derive the replicator dynamics for
these simple bimatrix games, where the players come from two separate popu-
lations with evolutionary rates n and m respectively (Bergstrom and Lachmann
2003). Here, x is the frequency of L players in population 1,y is the frequency
of U players in population 2, and �(D, z) is the payoff to choosing strategy D
when a fraction z of the other population plays strategy L:

(12.1)

Qualitatively, these 2 × 2 games allow only a limited range of dynamic behav-
iors. We can see this by examining a strategically equivalent game; equivalent
replicator dynamics can always be constructed by renormalizing matrix (1) so
that the off-diagonal elements are zero (Hofbauer and Sigmund 1998):

L R

U ���� 0, 0

D 0, 0 ����

Setting � = a – c, �= e – f, � = d – b, and �= h – g, the evolutionary dynamics are
preserved.2 Qualitatively, (generic) 2 × 2 games afford four different types of
evolutionary dynamics, characterized by what happens along each edge
(Hofbauer and Sigmund 1998; see Figure 12.1).

Types I and II have only one stable equilibrium to which the dynamics always
converge, and thus these games are of little interest so far as equilibrium selec-
tion is concerned. Type III has two stable equilibria, one at the upper right corner
and one at the lower left corner. Type IV has no stable external equilibria, but
only the mixed strategy equilibrium in the interior of the strategy frequency
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2 Although this renormalization does not alter the evolutionary dynamics for a popula-
tion playing this game, it is important to note that by renormalizing in this way we do
not necessarily preserve the relative value of (U,L) and (D,R) outcomes to each player.
Player 1 may receiver a higher payoff from the (U,L) combination when the game is
written in form (1), and a higher payoff from the (D,R) combination when the game is
written in form (3). This renormalization can actually transform a coordination team
game (in which both players prefer the same equilibrium) into a Battle-of-the-Sexes
game (in which each player prefers a different Nash equilibrium). Here we are inter-
ested in more than just evolutionary dynamics: we wish to compare payoffs across
equilibria (cf. section on LOCAL DYNAMICS OF MUTUALISM) and in structured popula-
tion models for which equilibrium payoffs determine carrying capacities (see section
on HIGHER-LEVEL POPULATION STRUCTURE). Since the renormalized form (3) of the
game does not preserve these comparisons, we will break from common convention
and work with games in their unnormalized forms.



space. Because we are interested in how the evolutionary process chooses
among a set of possible equilibrium divisions of the mutualistic surplus, the
games we examine here are Type III games with two equilibria.

As in previous studies, we consider interactions in which both players stand
to gain from the interaction if they can find a way to cooperate. However, the ap-
proach described here differs in two respects. Rather than looking at what pre-
vents breakdown, we examine how the gains from the interaction will be distrib-
uted between the two players, in the absence of incentive to defect on an estab-
lished cooperative arrangement. Thus, instead of examining a Type I Prisoner’s
Dilemma interaction with one Nash equilibrium, we examine a Type III coordi-
nation-type game with two Nash equilibria. This provides us with a simple
model that shares a common feature of many game-theoretic interactions: multi-
ple Nash equilibria exist, but different players have different “preferences” over
the set of equilibria. We would like to understand which equilibrium will be se-
lected in an evolutionary system. Second, we go “back to basics,” in the sense
that we will examine only the simple one-shot 2 × 2 game dynamics. The basic
rationale for doing so is simple. Regardless of the complex strategies of reward
and punishment, regardless of partner choice and market function, regardless of
the series of moves and countermoves involved, successful mutualistic interac-
tion will ultimately generate a surplus, and this surplus will ultimately have to be
divided. We defer the issue of how the mutualism is enforced and how bargain-
ing proceeds, so as to concentrate on the role of the evolutionary dynamics in
shaping the division of the surplus. By doing so and by choosing a simple 2 × 2
game with its small strategy space as in our model, we can examine the question
of surplus division in the simplest possible context. Once we understand the
workings of this system, we can extend the model in any number of ways. In the
final section, we speculate on the likely outcomes of such extensions.

LOCALDYNAMICS OFMUTUALISM

We are interested in how organisms split the surplus from a nascent
mutualism. This problem is closely related to bargaining problems treated in
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Figure 12.1 The four basic types of evolutionary dynamics for 2 × 2 games. Adapted
from Hofbauer and Sigmund (1998).



economics (Nash 1950, 1953; Rubinstein 1982): two or more individuals seek to
establish a mutually beneficial agreement (e.g., how to divide a surplus) by com-
mon consensus, but their interests conflict regarding the precise terms of the
agreement (Osborne and Rubinstein 1990). Frequently in these games, many
possible divisions of the surplus are stable in the Nash equilibrium sense. Given
this multitude of equilibria, what sort of division should we expect to observe in
practice? One can imagine a host of models to explain how such a division could
take place, and indeed the study of such models is a major component of bar-
gaining theory (Osborne and Rubinstein 1990). Although an axiomatic ap-
proach (Nash 1950) or rationality considerations (Rubinstein 1982) can resolve
the many possible equilibria, it might be more appropriate to employ popula-
tion-based evolutionary models to the study of mutualisms.

Then how, precisely, should we model this situation? For example, how can
we model a scenario in which two individuals have to split a surplus of three
units? Unfortunately, dynamic evolutionary models can be difficult to apply to
full-blown bargaining scenarios because of the infinite strategy spaces of these
games. Fortunately, one can learn a great deal by looking at the evolutionary dy-
namics of populations playing simpler one-stage games.

One of the classic one-stage games used is known as the Nash bargaining
game (Nash 1953; Osborne and Rubinstein 1990). Two players have to divide a
surplus of 3 units. Each player simultaneously “demands” an amount of the sur-
plus. If the two demands sum to 3 units or less, each player gets the amount that
she demanded. If the total of the two demands exceeds 3 units, each player gets
0. Because any demand from 0 to 3 is a legitimate strategy in the Nash bargain-
ing game, even this game has an infinite space. To study the evolutionary dy-
namics, we will make yet another simplification and look at a “discrete” or
“mini-game” form (Skyrms 1996; Sigmund et al. 2001):

Generous Selfish

Selfish 2, 1 0, 0

Generous 1, 1 1, 2

In this mini-game form of the Nash bargaining game, each player can demand
either 1 or 2 units of the surplus; the players receive their demands so long as the
two demands are compatible with a total surplus of 3 units. Let us now extend
this model slightly by replacing the (1,1) payoffs to mutual generous offers with
a payoff (k, k):

Generous Selfish

Selfish 2, 1 0, 0

Generous k, k 1, 2

When k = 1, we have the Nash bargaining mini-game, as shown above. When
k = 1.5, the entire surplus is retained and split evenly; the game becomes a
Hawk–Dove game with resource benefit 1 and cost 3 of fighting. When k = 0,
two generous offers lead to a coordination failure as severe as that resulting
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from two selfish ones: players suffer a complete loss of mutualistic surplus and
a standard battle-of-the-sexes game results. Thus, parameter k plays an impor-
tant role in determining the effect of evolutionary rate on equilibrium selection.

We begin by looking at the dynamics of this game with k = 1. Figure 12.2
shows a set of evolutionary trajectories for the space of strategy frequencies for
species 1 on the y axis and species 2 on thex axis, under the replicator dynamics
(2) with the two populations evolving at equal rates. Almost every trajectory
ends at one of two resting points: the upper left corner in which species 1 enjoys
a favorable division of the surplus, or the lower right corner in which species 2
enjoys a favorable division. The eventual end point is determined by the initial
frequencies; the set of all points from which the dynamics lead to a given equi-
librium is called the domain of attraction of that equilibrium. The diagonal line
running from lower left to upper right corners represents the separatrix between
the two domains of attraction. All points on the same side of this separatrix go to
the same equilibrium. The horizontal line running through the middle of the
strategy space separates the points at which species 2 evolves to be more gener-
ous (above this line) from those at which it evolves to be more selfish (below this
line). The vertical line strikes a similar division for species 1. These two lines to-
gether partition the strategy space into four quadrants, discussed further below.

Clearly, the ultimate division of the mutualistic surplus will depend on the
starting strategy frequencies in each species. Thus we cannot answer the ques-
tion, “How will the surplus be split?” without knowing where the system started.
Nonetheless, one reasonable measure of the likelihood of various outcomes is
simply the relative size of the various domains of attraction. All else being equal,
we might expect that equilibria with large domains of attraction will be reached
more often than equilibria with small domains of attraction.

What determines, however, the sizes of the domains of attraction? Bergstrom
and Lachmann (2002) show that both the game payoffs and the relatively evolu-
tionary rates matter. In particular, the relatively evolutionary rates of the two
species determine the way that the separatrix curves across the strategy space.
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Figure 12.2 Evolutionary trajectories when k = 1. Horizontal and vertical lines show
the places at which the change in strategy frequency switches direction for players 1 and
2, respectively. Diagonal is the separatrix between the two domains of attraction.



Depending on the payoffs of the game, this can either increase or decrease the
domain of attraction for the slower player. Figure 12.3 shows the strategy space
and evolutionary dynamics for k = 1.5. Here the domain of attraction of player
1’s favored equilibrium (the upper left corner) increases as player 1’s relative
rate of evolution decreases. This is the first manifestation of what we call the
“Red King effect.”

Note that as species 1 evolves at an increasingly slower rate, intense move-
ment across the strategy space occurs along the horizontal axis. This strategy
change occurs as the result of evolutionary change by species 2. This increases
the fraction of the upper right-hand quadrant that goes to species 1’s favored
equilibrium, while decreasing the fraction of the lower left-hand quadrant. Rela-
tive evolutionary rates do not matter in the upper left- and lower right-hand
quadrants; any point in either of these quadrants goes to the equilibrium in the
same quadrant regardless of evolutionary rates.

Thus, the effect of evolutionary rate on the size of domains of attraction de-
pends on the chance that the starting point is in the lower left quadrant versus the
upper right quadrant. As summarized by Figure 12.4, the fast-evolving species
“gets” the lower left quadrant and “loses” the upper right one.3

What determines, however, the quadrant in which the coevolutionary process
is likely to begin? One important factor will be the size of each quadrant. Ask in-
creases, the area of the upper right quadrant — where slow evolution is favored
— also increases. Indeed, the slowly evolving species will have a larger domain
of attraction around its favored equilibrium whenever k > 1, whereas the
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(c) Species 1 faster

Figure 12.3 The effect of evolutionary rate on domains of attraction when k = 1.5: (a)
species 1 evolves eightfold slower than species 2; (b) equal rates of evolution; (c) species
2 evolves eightfold slower. The slower that species 1 evolves, the larger the domain of at-
traction around its favored equilibrium at the upper left-hand corner.

3 Our results may explain a curious observation reported by Doebeli and Knowlton
(1998; see also Figure 3C therein). In their simulations of mutualism evolution, based
on an iterated Prisoner’s Dilemma model, they found that the more slowly evolving
species received higher payoffs.



faster-evolving species will have a larger domain of attraction when k < 1
(Bergstrom and Lachmann 2003).

This result makes intuitive sense in light of bargaining theory. In bargaining
games, it is well known that there may be a strategic advantage to “having one’s
hands tied” during bargaining. This is valuable because threats of a constrained
player become more credible, while threats against this player are rendered inef-
fective. Since susceptibility to threats often acts as a major determinant of the
strength of one’s bargaining position, this is a significant advantage.

The Red King effect can be seen as simply this: a slowly evolving species has
its hands tied in the coevolutionary interaction by which division of the surplus
is “negotiated.” Here the bargaining process does not take place within a single
play of the game, but rather occurs over the course of the coevolutionary interac-
tion between the players. In other words, the coevolutionary process can be
viewed as a bargaining process through which the two species arrive at an equi-
librium to the Nash bargaining game through a series of evolutionary moves and
counter moves. In this bargaining process, fast evolution does not allow a spe-
cies to outrun a partner — it simply causes this species to yield to whatever
threats are made. This is captured by the local dynamics described earlier.

Of course, the initial proposals brought to the table by the negotiating parties
will also have a major impact on the outcome of a negotiation. In the mutualism
example considered here, if both species initially ask for more than their share of
the proverbial pie, susceptibility to threat will be important. What will be the ini-
tial proposals that the species bring to the table? We explore this question below.

HIGHER-LEVEL POPULATION STRUCTURE

Evolutionary game theory typically assumes that the populations of players
materialize fully formed and out of thin air at the beginning of the evolutionary
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Figure 12.4 Summary of local dynamics. In the upper left and lower right quadrants,
all evolutionary trajectories reach the upper left and lower right equilibria (black dots) re-
spectively. In the upper right quadrant, the slow species reaches its favored equilibrium;
in the lower left quadrant, the fast species reaches its favored equilibrium.



process under consideration. Obviously, the real situation is somewhat more
complicated. When populations are formed anew, their members must have
come from somewhere, and this somewhere may have had a significant influ-
ence on the strategies that they bring with them to the new population.

Thus, when potential mutualists come together in a given location, what
should we imagine about their past histories, their distribution of strategy
choices, and so forth? One straightforward approach is to assume that upon
founding a new patch, individuals use the same initial strategies that they had
employed in their natal patches. We can model this by looking at a structured
population of players, in which the dynamic process of strategy change treated
above occurs in parallel in a set of distinct local patches. Each local patch then
sends out migrants to join existing patches or to found new patches. There is an
extensive literature on the workings of such structured-population models
(Bergstrom 2002). Here we have selected to work with one of the simplest of
these models, the haystack-type model (Maynard Smith 1964; Cohen and Eshel
1976). We expect that other structured population models will yield qualita-
tively similar results in most cases.

Our haystack model works as follows. The environment is divided into a set
of local patches. Every “season,” a small number of founder individuals of each
the two species colonize each patch. Once colonization has occurred, within
each patch during the course of a single season the strategy frequencies change
according to the local dynamics characterized in the previous section.

Note that these local dynamics characterize changes in strategy frequencies
but not in population size. In the structured population model, we are also inter-
ested in how population sizes change according to the strategies played. For
simplicity, we will assume that within the course of a single season, each species
grows to a carrying capacity in each patch. The exact magnitude of the carrying
capacity for each species reflects the “favored” or “disfavored” nature of the
equilibrium reached in the patch. That is, a species will have a higher carrying
capacity in a given patch if it reaches its favored equilibrium than if it reaches its
disfavored equilibrium. We will assume that each season is sufficiently long that
every local subpopulation reaches an equilibrium with respect to strategy fre-
quencies, so that we only need to specify carrying capacities for the two equilib-
ria and not for any out-of-equilibrium combinations of strategy frequencies.

At the end of the season, patch boundaries are erased. Individuals disperse,
and subpopulations are formed of individuals chosen at random from the global
population. A new season then begins and the process starts anew.

Figure 12.5 shows how the domain of attraction around each equilibrium
shifts as we take into account the higher-level population structure. Under local
dynamics, domains of attraction are equal in size for k = 1. However, global dy-
namics favor slowly evolving species. This species (species 2) has a larger do-
main of attraction around its favored equilibrium at the lower right-hand corner.
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Why does this happen? Consider the process by which a new subpopulation
is formed. Members arrive from other subpopulations. Subpopulations at the
equilibrium where species 1 is favored, i.e., where species 1 is playing selfishly,
have a higher carrying capacity for species 1 and thus contribute more species 1
individuals than do subpopulations where species 2 is favored. Therefore, the
odds are that a majority of incoming species 1 individuals will have arrived from
a subpopulation in which they were playing selfishly. Similarly, a majority of in-
coming species 2 individuals will most likely have come from a subpopulation
in which they were playing selfishly. Consequently, when a new subpopulation
is first established, the majority of players therein are likely to be playing self-
ishly: the newly formed population is likely to begin with a set of strategy fre-
quencies belonging to the shaded quadrant in Figure 12.6. We know that local
dynamics favor the slow evolver under these circumstances. Thus in each newly
formed subpopulation, slowly evolving species will have a relative advantage.

We can visualize this argument as follows: if a proportion s of the patches
reaches an equilibrium that favors species 1, and (1 – s) reach one that favors
species 2, and the relative size of the carrying capacities for species 1 and 2 are�
and �, then at the end of a season the proportion of individuals of species 1 play-
ing the selfish strategy in the global pool will bes/(s + (1 – s)�), and the propor-
tion of species 2 playing the selfish strategy will be (1 – s)/(1 – s + s�).

Thus the relative frequencies of the strategy types in the global pool will lie
somewhere along the dark curve depicted in Figure 12.6. This curve passes
through the upper-right quadrant, where slow evolution is favored, and not
through the lower-left one, where fast evolvers are favored.
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Figure 12.5 Domains of attraction in the local dynamics and for the higher-level popu-
lation structure with k = 1, when species 1 evolves 8-fold faster than species 2. For the
global dynamics, each new patch is founded by 9 individuals and each species’ carrying
capacity at its favored equilibrium is 4 times that at the disfavored equilibrium.
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Once again we can see these results in light of bargaining theory. As men-
tioned above, the initial proposals brought to the table by the negotiating parties
will also have a major impact on the outcome of a negotiation. In the mutualism
example considered here, if both species initially ask for more than their share of
the proverbial pie, susceptibility to threat will be important. But what will be the
initial proposals that the species bring to the table? We have argued that in
coevolutionary interactions, population structure bears critically upon this ques-
tion. If new patches are formed by immigrants from other patches, individuals
will come together prepared by evolution to pursue a division similar to that
which they were receiving in their previous patches. When carrying capacity of
a patch is affected by the division of mutualistic surplus, most players entering a
new patch will arrive “demanding” more than half of the surplus. This situation
(when parties do not initially agree on the division because both expect a major-
ity share) is precisely when it pays to have one’s hands tied in the negotiations.

DISCUSSION

BeyondMini-games

Thus far, we have discussed the evolutionary dynamics associated with popula-
tions playing simple 2 × 2 games. What happens when the interactions in ques-
tion are broader in scope? What happens, for example, when individuals of the
two species are playing the full Nash bargaining game in which each can de-
mand any amount from 0 to 3?

For this game, a full analysis of the local dynamics, which take place on an in-
finite-dimensional simplex and which will depend on many particulars of the
model, would be very difficult. Nonetheless, analogy to the 2 × 2 game provides
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tion at the start of the next season. Recall that local dynamics favor slowly evolving spe-
cies in the shaded upper right quadrant. Carrying capacity ratios are � = 4 and � = 4.



us with a good sense of how evolution will proceed. In the full game, just as in
the 2 × 2 counterpart, slow evolution will be favored when players are demand-
ing too much, so that the sum of the demands exceeds 3 and bargaining breaks
down. By starting with a large demand and evolving slowly, one species forces
the other to “yield” and to demand less than half of the total. Fast evolution will
be favored when the players begin by demanding less than 3, because the fast
evolver will be able to adjust its demand to claim the remainder of the 3 units.

Moreover, as in the 2 × 2 version of the game, the higher-level population dy-
namics will ensure that players come together with demands in the region where
slow evolution is favored: these dynamics will act to bring together players who
are demanding too much, rather than too little. Imagine a global population com-
posed of subpopulations which have reached a range of different equilibrium ar-
rangements: (�, 3 – �), (2�, 3 – 2 �) , . . ., (3 –�, �). At the beginning of a new sea-
son, the majority of species 1 players will come from populations where species
1 had a high carrying capacity, i.e., populations where species 1 was receiving a
relatively large fraction of the total benefits. Similarly, species 2 players will
come from populations in which species 2 had a high carrying capacity, i.e., pop-
ulations where species 2 was receiving a relatively large fraction of the total ben-
efits. Thus the large majority of the newly founded subpopulations will be com-
posed of players who together demand a total exceeding 3. This is the region in
which slow evolution is favored; consequently we expect the higher-level popu-
lation structure to favor slow evolution in the full Nash bargaining game as well.

Interactions among Humans

Here we have focused primarily on mutualistic associations among nonhuman
agents evolving by natural selection. Will similar processes apply to human in-
teractions? We argue, they may. Various processes of strategy change, includ-
ing learning and copying behaviors, can yield qualitatively similar outcomes to
those observed in systems that change according to replicator dynamics.

This is all good and well, but human beings (or even real-world mice) do not
live in haystacks with the sort of structure modeled above. Can analogous
higher-level selection processes nonetheless operate? We stress that these sorts
of structured-population dynamics require neither small founding populations
(see Bergstrom and Lachmann 2003) nor that some sort of life-or-death group
selection take place. Such a process only requires that the majority of players in
each new round come from places where they did well in the previous round.
This could occur for many reasons. For example, in human interactions, players
may decide whether to continue participating in some two-sided interaction
based on their past experience. Players who have done well may continue to en-
gage in the interaction, whereas those who have done poorly may choose to opt
out and do something else instead. Under certain circumstances, players who
reached the favored outcome will return to play again, players who reached the
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disfavored outcome will take the outside option, and the conditions will be met
for the Red King effect to operate on the higher level of population structure.

This phenomenon may be rather general to human interactions, such that the
individuals who choose to participate at any given time are either new to the in-
teraction in question or have a past record of success. Thus individuals choosing
to play may have a higher-than-average expected return from the game. In bar-
gaining games of this sort, this means that the individuals choosing to participate
will enter each new situation asking for more than an even share.

SUMMARY

The study of interspecific mutuality allows biologists an unparalleled opportu-
nity to explore the mechanisms beyond kin selection by which coordination and
cooperation can evolve. Although much of the theoretical literature to date has
focused on mechanisms by which cooperation is stabilized, we addressed the
issue of how benefits that arise as a consequence of mutualism are distributed
among the participants. We have given particular attention to the role of evolu-
tionary rate in determining coevolutionary outcomes. Most notably, recent re-
sults suggest that, contrary to the Red Queen hypothesis, slow evolution may
actually lead to favorable outcomes in some coevolutionary interactions.
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