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Abstract Mathematical models are valuable tools with which to predict and explain the
epidemiology of nosocomial infection. As such, modeling will play a crucial role
in the effort to control the growing threat posed in hospitals by antibiotic-resistant
bacteria. In this chapter, we illustrate the utility of the model-based approach,
using a simple mathematical model of colonization and infection by antibiotic-
sensitive and resistant bacteria in a hospital setting. The model explains a number
of otherwise counterintuitive observations regarding the spread of nosocomial
resistance: (1) non-specific infection control measures such as hand-washing will
disproportionately reduce the prevalence of resistant bacteria within the hospital;
(2) resistance-control interventions should generate reductions in resistance much
more rapidly in hospitals than in communities as a whole; (3) treatment with one
antibiotic may be an individual risk factor for acquisition of resistance to another
antibiotic, even in the absence of genetically linked resistance mechanisms.
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1. WHY MATHEMATICAL MODELS?

Mathematical models have made substantial contributions to our understand-
ing of the within-host population dynamics of microorganisms and the epidemi-
ological dynamics of infections (1, 2). Such models underlie our present under-
standing of phenomena as diverse as the multi-year cycles of measles incidence
and their changes following vaccination (1), the dynamic state of viral replica-
tion during the “latent” period in HIV infection (3, 4), and the maintenance of
immune memory (5, 6). Recently, such models have been used — with partic-
ularly promising results — to evaluate the relationship between antimicrobial
use and antimicrobial resistance, both at the level of individual patients and at
the hospital or community level (7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17).

In the context of those infections that are acquired in a hospital or ICU,
models will be valuable for answering three questions of particular interest:

How fast will resistance to a particular antibiotic rise in response to in-
creased use? Will it appear rapidly in a large fraction of treated hosts,
as in monotherapy of tuberculosis (18); will it take several decades but
then spread rapidly in some institutions, as with vancomycin resistance
in enterococci (19); or will it appear rapidly but remain rare, except in
immunocompromised patients, as in the case of acyclovir resistance in
herpes simplex viruses (20, 21)?

How fast is resistance expected to decline if use of an antibiotic is reduced
(8, 9, 13, 22, 23)? Will dramatic changes be seen within weeks to months
(24, 25, 26, 27, 28), or will it take several years to see a substantial change
(9, 29)?

When an individual receives antimicrobial treatment, what is the effect
on resistance in the bacteria in that individual, in other individuals in the
same hospital or ward, and in other individuals in the community at large
(30)? What are the relationships among these different effects, and which
ones are most important to measure?

Despite the success of mathematical models in beginning to address these and
other questions about antimicrobial resistance, the use of population biological
modeling in this domain is sometimes greeted with a degree of skepticism. The
concerns are essentially twofold.

Some critics suggest that mathematical models are too complicated to be
useful, that models are merely complicated (and often confusing) restatements
of results already well-known through clinical experience. Such a skeptic might
wryly point out, for example, that it does not take a rocket scientist, let alone a
mathematical epidemiologist, to realize that increasing the use of an antibiotic is
likely to increase the level of resistance to that antibiotic. There is indeed a valid
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point here. It is certainly appropriate to ask, “What do I know, or understand,
after seeing the results of this mathematical model, that I did not know, or did
not understand, before seeing them?" The answer to this question determines
— to a large extent — the value of the model to users, such as clinicians,
epidemiologists, and public health planners. However, it is essential to realize
that even when the models do not yield results that are qualitatively surprising,
quantitative description of epidemiological phenomena is crucial to the design
and evaluation of interventions to control resistance. To evaluate whether an
intervention might be worthwhile (or whether one has been successful), it is
necessary to know how large an effect the intervention should have and how
quickly its benefits should accrue. Indeed, the work described in this chapter
will illustrate the utility of models for these purposes.

A second set of skeptics argue essentially the opposite, asserting that math-
ematical models are too simple to be useful in the complex world of hos-
pital epidemiology. This group points out that the transmission dynamics of
antimicrobial-resistant organisms, especially in the hospital, are extremely com-
plicated, and that mathematical models are far too idealized to capture this
complexity; therefore, it is asserted, the models cannot hope to be of any help.
Such skeptics might go on to argue that since the goal is to reduce the effect of
resistance on morbidity and mortality, the important thing is to figure out what
works in the real world.

Certainly, we do not dispute the complexities inherent to the biology and
epidemiology of resistance. Rather, we acknowledge a number of particularly
thorny complexities associated with hospital epidemiology. These include

The tremendous diversity in the genetic bases, biochemical properties,
drug specificities, and fitness consequences of resistance mechanisms.

Difficulties in pinpointing the routes and causes of transmission of sen-
sitive and resistant organisms when a carrier state that typically precedes
disease, as is the case in most nosocomial infections. This process is fur-
ther complicated by the roles of health care workers as vectors of trans-
mission (8) and the manner in which the hospital environment serves as
a reservoir of microorganisms.

Ignorance about the role of the normal flora in modulating an individual’s
susceptibility to colonization by bacteria from the environment or to over-
growth of endogenous bacteria (31, 32).

The probable importance of rare, “random," and unpredictable events
that can have major consequences for the epidemiology of resistance.
These events occur on a global scale, as when resistance to a particular
drug first appears in a species of clinical significance, and they are then
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repeated locally, in a particular community or hospital, when a resistant
organism or a new set of resistance genes is introduced from outside.

Despite these complexities, carefully constructed models that incorporate
key features of hospital epidemiology can provide useful answers to questions
about the relationships among antibiotic use, infection control, and antibiotic
resistance. The models will indeed be simplifications, and an important step in
the modeling process is to check whether the predictions of the models are ro-
bust, or whether they are artifacts introduced by the simplifications themselves.
Because of these complexities, we are not enthusiastic about the abilities of
models to “fit" precisely and quantitatively the time course of particular epi-
demics of resistant pathogens. Rather, we think that models can be valuable for
the study of antimicrobial resistance in general, and in the ICU in particular, in
three ways:

by making testable, quantitative predictions about the epidemiology of a
particular pathogen that were not apparent to intuition alone,

by suggesting explanations for epidemiological phenomena that have
been observed but whose mechanisms were not understood, and

by aiding in the design and justification of standards for judging the
success of interventions that are intended to control resistance in a specific
context.

In this chapter, we describe a simple mathematical model of the transmission
dynamics of antibiotic-resistant and -sensitive bacteria in a hospital or a unit of
a hospital. We hope that this model and its predictions will exemplify all three
of these uses for models.

2. A MODEL FOR HOSPITAL-ACQUIRED
INFECTIONS

Several fundamental differences — with important epidemiological con-
sequences — distinguish hospital-acquired infections from their community-
acquired counterparts. First, for most of the important nosocomial pathogens,
asymptomatic colonization of the skin, upper respiratory tract, or gut by the
bacteria normally precedes infection (33). As a consequence, transmission of
the bacteria typically proceeds from carrier to carrier, rather than from infected
case to infected case. Second, a hospital or intensive care unit has highly fluid
human and microbial populations, unlike most other communities in which re-
sistance is studied. The average patient in many hospital units stays only about
a week (34, 26, 30) and therefore the hospital population turns over rapidly,
bringing in bacteria from outside and discharging them, with the patients, back
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Figure 19.1 A simple compartment model of bacterial tranmission dynamics in a hospital
setting. Patients may be uncolonized (X), colonized with sensitive bacteria (S), or colonized
with bacteria resistant to drug 1 (R). Patients enter (and leave) the hospital at rate � per day; of
the newly-admitted patients, a fraction m are colonized with sensitive bacteria and 1 �m are
uncolonized. Colonization of the uncolonized patients occurs by mass action with transmission
rate parameter �; resistant bacteria suffer a proportional reduction in transmission rate of c.
Superinfection — the infection and conversion of already-colonized individuals — occurs at a
rate � relative to infection of uncolonized individuals. Patients are treated with drug 1 and drug 2
at rates �1 and �2 per day, respectively, and patients spontaneously clear bacterial colonization at
a rate  per day. The model is fully specified by three ordinary differential equations: dS=dt =
m�+�SX�(�1+�2++�)S+��cSR; dR=dt = �(1�c)RX�(�2++�)R���cSR;
dX=dt = (1�m)�+ (�1 + �2 + )S + (�2 + )R� �SX � �(1� c)RX � �X .

into the community. This flow of patients and bacteria between community and
hospital can be seen in Figure 19.1.

The model in Figure 19.1 is designed to reflect the transmission dynamics
of a single bacterial species, which is transmitted among individuals within the
hospital (or ICU). Within the hospital, the model considers three populations
of patients: those not carrying the bacterial species of interest (hereafter, the
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bacteria), those carrying bacteria sensitive to a particular drug (“drug 1"), and
those carrying bacteria resistant to drug 1. The number of individuals in each
group is given by X , S, and R respectively. Patients may enter the hospital
in any of these categories. For mathematical simplicity, we will describe the
model for the special case in which patients carrying resistant bacteria enter
only very rarely; most newly admitted patients are either uncolonized by the
bacteria or are carrying sensitive bacteria. We describe elsewhere (13) how the
model changes if large numbers of patients enter the hospital carrying resistant
bacteria.

Once in the hospital, patients may be treated with either of two drugs. If they
are treated with drug 1, patients carrying sensitive bacteria will be cleared (S
patients will be converted into X patients). By contrast, patients treated with
a second, unrelated drug (drug 2) will be cleared of their bacteria, regardless
of which kind of bacteria they carry; we assume for this basic model that all
bacteria are sensitive to drug 2. Patients not carrying either kind of bacteria
can be colonized, either by sensitive or resistant bacteria, at rates proportional
to the current prevalence of that kind of bacteria. Patients already carrying
sensitive bacteria may be colonized with resistant bacteria, and vice versa, but
this "super-colonization" process occurs at a rate lower than the colonization
of uncolonized patients. Patients may spontaneously clear carriage of bacteria
of either sort, at a low rate. Patients from each category leave the hospital at a
fixed rate.

The mathematical details of this model have been given elsewhere (13).
Rather than recapitulate them here, we instead summarize some of the clinically
important predictions of the model, and compare these predictions with data
from the literature on nosocomial infections and resistance.

3. MODEL PREDICTIONS, EMPIRICAL DATA, AND
CLINICAL IMPLICATIONS

The model defines the conditions under which resistant bacteria can persist
in the hospital, and conversely defines the conditions under which endemic
resistant bacteria can be eradicated. Endemic transmission of resistant bacteria
can persist in the hospital if the transmission rate of bacteria in the hospital
is sufficiently high, if use of drug 1 is sufficiently common, if use of drug
2 is sufficiently rare, and if the average length of stay is sufficiently long.
Figure 19.2 shows how these parameters trade off with one another. If within-
hospital transmission rates � are high (Fig. 19.2a), then resistant bacteria can
persist despite relatively rates �1 of drug 1 use. If within-hospital transmission
rates are reduced, then a higher level of drug 1 use is required to maintain
endemic transmission of bacteria resistant to drug 1. As the rate �2 of use of
drugs for which resistance is not present increases (Fig. 19.2b), higher rates
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of transmission � (or higher rates of drug 1 use) are required for endemic
persistence of resistant bacteria. In hospitals (or units) where the average length
of stay 1=� is longer, endemic transmission of resistant bacteria is more easily
maintained (Fig. 19.2c).
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Figure 19.2 Parameters for which resistant bacteria can persist (white) and cannot persist
(black) in the hospital (see text). Parameters (except when varied on x or y axes): c = 0:05,
 = 1=30, m = 0:75, �1 = 0:2, �2 = 0, � = 0:1, � = 0:25.

These predictions have several implications for the control of resistance in a
hospital. As Figure 19.2 demonstrates, different interventions — reduction in
the use of the drug to which resistance is observed, increased use of other antimi-
crobials, and infection control measures aimed at generally reducing within-
hospital cross-colonization of patients — can achieve the goal of reducing or
eliminating resistant bacteria. In some cases two partially successful measures
can in concert result in elimination of endemic transmission, although neither
would have sufficed alone.

Even without the model, it is clear that one way to approach this goal is to
reduce use of the antibiotic to which the bacteria are resistant; this intuition is
confirmed by the model. Less clear is how the use of other antimicrobial agents,
to which bacteria are not resistant, affects the transmission of bacteria resistant
to a particular drug (drug 1 in our model). Clinical studies and clinical practice
give conflicting evidence on this point. On one hand, many studies show that
antimicrobial use in general is a risk factor for colonization or infection with
bacteria resistant to a particular drug (35, 36, 37, 38, 39, 40, 41) (the model’s
predictions for such studies are discussed below). Presumably following this
logic, one response to problems of resistance has been to curtail use of all antibi-
otics in a hospital or unit (26, 42). On the other hand, the use of antimicrobial
prophylaxis to reduce resistance (34), or the implementation of antimicrobial
cycling programs (43, 44) both rely on the intuition that the use of some drugs,
for which resistance is not observed, can help control the level of resistance to
other drugs, for which resistance is a problem.
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The model’s prediction supports the latter intuition, that increased use of
one antimicrobial agent (drug 2) can help reduce the prevalence of resistance to
another drug (drug 1). A key caveat to this prediction is that the bacteria resistant
to drug 1 are not cross-resistant to drug 2. Thus, the prediction would not be
appropriate for closely related drugs sharing the same resistance mechanism,
or for drugs for which resistance genes are linked on a plasmid.

The model predicts that infection control measures such as hand-washing
and barrier precautions, which are directed nonspecifically at reducing trans-
mission of all bacteria, will disproportionately help to reduce the prevalence of
resistant bacteria.Figure 19.3 shows the predicted prevalence of colonization
with sensitive and resistant bacteria at equilibrium in the model, as a function
of the rate of within-hospital transmission �. For a wide range of transmission
rates � (given that resistance can persist in an endemic state), decreases in the
transmission rates decrease the equilibrium prevalence of resistance more than
they affect the equilibrium prevalence of sensitive bacteria. Notice that this
prediction provides a further rationale for the importance of infection control
in the hospital as a measure for reducing antimicrobial resistance.
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Figure 19.3 Equilibrium fre-
quency of uncolonized indi-
viduals (dashed line), individ-
uals colonized with sensitive
bacteria (dash-dotted line),
and individuals colonized with
resistant bacteria (solid line).
When resistant bacteria are en-
demic, decreases in transmis-
sion rate typically reduce dis-
proportionately the frequency
of resistance. Parameters are
as in Figure 19.2, except �2 =
0:1.

Though counterintuitive at first glance, this observation can be explained
from the structure of the model shown in Figure 19.1. Patients enter the hos-
pital either carrying sensitive bacteria or none, but only very rarely carrying
resistant bacteria. Thus, resistant bacteria depend for their survival solely on
transmission within the hospital, while sensitive bacteria are maintained both by
transmission in the hospital and by “immigration” with newly admitted patients.
Reductions in transmission therefore do disproportionate harm to resistant bac-
teria.

The model predicts that successful interventions will reduce resistance in a
very short time, within weeks or a few months.Figure 19.4 shows the change
in the prevalence of colonization with resistant bacteria, starting from an equi-
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librium level, following various interventions. As the figure demonstrates,
different interventions will have different effects, but in each case noticeable
change is apparent within a very short time period. Such rapid changes are
observed for very wide ranges of parameters, as long as the average stay of a
patient in the hospital is assumed to be days or weeks.
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Figure 19.4 Response to resistance control interventions: frequency of resistance carriage after
(a) reduction of transmission rate by 50%; (b) cessation of drug 1 use with (dashed line) and
without (solid line) replacement by use of drug 2. Parameters are as in Figure 19.2.

The reason for the rapid changes in prevalence of resistant and sensitive bac-
teria is the rapid "flow" of patients through the hospital, and the fact that some
of the newly entering patients bring sensitive bacteria with them. Thanks to this
constant influx of sensitive bacteria, which compete with resistants to colonize
patients, resistant bacteria cannot persist in the hospital for long if conditions
are unfavorable for their transmission. Interestingly, in contrast to other models
of the transmission dynamics of antimicrobial resistant bacteria, this process
does not depend on a difference in Darwinian fitness (transmissibility, ability
to colonize, or ability to persist within a patient) between sensitive and resistant
bacteria. In a hospital (under our assumptions), the entry of patients already
carrying sensitive bacteria will replenish the sensitive population rapidly, allow-
ing them to out-compete resistant bacteria whenever conditions are no longer
favorable for the resistant strains (due to reduced transmission, reduced use of
the drug to which they are resistant, etc.).

This prediction is consistent with the observed consequences of interventions
designed to reduce resistance in hospitals. Many of these interventions result
in substantial changes in the prevalence of resistance within a very short time
(25, 26, 27, 28). The prediction is specific to nosocomial infections, because it
depends on the entry into the system of individuals (from outside) who carry
sensitive bacteria. Thus, it would not be expected to hold for most community-
acquired infections, and indeed it does not. In the rare cases where interven-
tions intended to limit resistance in community-acquired pathogens have been
reported, their success has occurred on a time scale of years (9, 29). The model
thus suggests that when interventions to reduce resistance in hospitals do not
produce rapid results, it is appropriate to seek a specific explanation for the
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failure: perhaps, a longer average duration of stay than in most hospitals, or the
existence of a reservoir — an environmental source or a long-term colonized
patient or health care worker — which could be slowing the “wash-out” of
resistant bacteria.

The model predicts that, measured at the individual level, use of one antibiotic
(drug 2) will be a risk factor for colonization with bacteria resistant to another
antibiotic (drug 1). This result is paradoxical because, as we have just seen,
the use of drug 2 can help to reduce the prevalence of bacteria resistant to drug
1 in the hospital as a whole. Thus, there is a positive association between drug
2 use and drug 1 resistance for individuals, but a negative association between
drug 2 use and the total prevalence of resistance to drug 1 (at the population
level). These relationships are shown in Figure 19.5.
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Figure 19.5 Equilibrium frequency of drug 1 resistance carriage in individuals treated with
drug 2 (solid line), and untreated with drug 2 (dashed line). Increasing drug 2 usage decreases
the overall frequency of resistance in the hospital, but individuals treated with drug 2 are always
more likely to be infected by bacteria resistant to drug 1. For numerical tractability, an example
with no superinfection is shown (parameter values are c = 0:05,  = 1=30,m = 0:75, �1 = 0:2,
�2 = 0, � = 0:1, � = 0). Qualitatively similar results obtain when superinfection is present.

Like some of the previous predictions, this opposition between individual
risk and population-wide effects is a consequence of the entry of individuals
already carrying drug-sensitive bacteria into the hospital, and is therefore not
expected to appear in community-acquired infections. We see this result in
hospitals because treatment with drug 2 has two opposing effects on bacteria
resistant to drug 1: (a) If a patient already carries sensitive bacteria, drug 2
clears bacterial carriage and increases the chance that the individual will be
colonized by bacteria resistant to drug 1, which are circulating in the hospital;
(b) if an individual already carries bacteria resistant to drug 1, drug 2 clears
their carriage of these resistant bacteria. At the individual level, the effect (a)
is more powerful, while at the level of the population, effect (b) is stronger.
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This prediction of the model is consistent with published studies of antimi-
crobial use and resistance in hospitals. Such studies often find an association
at the individual level between prior use of one antibiotic and infection or col-
onization with bacteria resistant to another drug (45, 38, 41). Sometimes, this
association has a trivial explanation; for example, the same gene, or two genes
located on the same plasmid, might determine resistance to both drugs. How-
ever, in several cases no such explanation is available; for example, quinolones
(for which resistance is chromosomal) have been detected as a risk factor for
carriage of enterobacteria carrying plasmid-mediated cephalosporin resistance
(45, 41).
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Figure 19.6 Dynamics of re-
sistance after switching from
using drug 1 exclusively to us-
ing drug 2 exclusively, at time
0. The frequency of resistance
declines rapidly as a conse-
quence, even though individu-
als treated with drug 2 (dashed
line) are temporarily at greater
risk of acquiring bacteria resis-
tant to drug 1 than are individu-
als who remain untreated with
drug 2 (solid line). Parameters
are as in Figure 19.5.

In highlighting the opposition between individual and population-level con-
sequences of intervention, the model shows that information about individual
risk factors cannot be extrapolated to predict the effects of interventions at a
population level (46). This distinction means that it is crucial to measure the
right quantities when assessing the effects of interventions. For example, if
a hospital chose to switch its formulary from empiric therapy with one drug
(for which resistance had become a problem) to therapy with another drug (for
which resistance was rare) (43), the model predicts that the use of the new drug
would help to bring down resistance to the first, but that as resistance to the first
declines, patients treated with the second drug would be at increased risk of
carrying resistance to the first. If only individual risk factors were measured in
this hospital, one might erroneously conclude that the new drug was responsible
for maintaining resistance to the old drug, whereas in fact it was contributing
to the decline of that resistance. Such a situation is illustrated in Figure 19.6.
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4. CONCLUSIONS, CAVEATS, AND FUTURE
DIRECTIONS

In this chapter, we have illustrated the way in which a simple mathematical
model can be applied to the problem of antibiotic resistance in hospitals and
ICUs. Of course, several caveats must be noted. While the model suggests that
in the short term, resistance to one drug can be controlled by the use of a second
drug, it would be a mistake to treat this prediction as a prescription, without
considering several additional factors. First, the model assumes that there is
no resistance to drug 2; when resistance to drug 2 is present in the population
as well, more complicated models (and perhaps consideration of drug-cycling
strategies) will be required. Second, even in the absence of resistance to drug
2, the use of this drug will presumably select for the generation of resistance to
it and therefore broad use may be undesirable. Third, use of drug 2 in order to
control resistance to drug 1 may accelerate the evolution of multiply-resistant
strains of bacteria, which could in turn pose a far more grave threat than either
singly-resistant strain.

Despite these limitations, our results illustrate all three of the general appli-
cations of modeling that were mentioned in the introduction. First, the model
makes testable predictions that were not intuitively obvious. For example, the
model predicts that in hospitals, resistance-control interventions should should
take effect rapidly, within a matter of weeks to months and that if change does
not occur on this time scale, specific explanations (e.g. environmental reser-
voirs) should be sought. Second, the model allows us to explain mechanistically
a series of puzzling observations about hospital-acquired infections. By taking
into account the constant flow of patients between hospital and community and
the commensal nature of many bacterial species responsible for nosocomial
infections (including the fact that individuals entering the hospital may already
be colonized), the model explains why (1) reducing transmission disproportion-
ately affects the prevalence of resistant bacteria; (2) microbial populations in
hospitals can respond to interventions within a very short time span compared
to community acquired infections; (3) treatment with one antibiotic can be a
risk factor for bacteria that are resistant to another antibiotic. Third, and per-
haps most importantly, the model provides insight for designing standards by
which to judge the success of interventions. In particular, our analysis illustrates
the way in which static epidemiologic measures of association (individual risk
factors) can be misleading predictors of the effects of intervention.
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