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ABSTRACT

Theoretical models of mate choice and sexual selection typically make one of two simplifying
assumptions. Either mate preferences are assumed to be uniform (e.g. all females have the same
preferences with respect to males), or mate choice is assumed to be a one-sided affair
(e.g. females do all the choosing). Recent empirical studies suggest that, in many cases, neither
assumption holds. In this paper, we show how two-sided matching – a branch of game theory
developed in the economics literature – can be used to model mutual mate choice with non-
uniform mate preferences. The economics literature is reviewed, and a number of biological
applications are suggested. We characterize a systematic conflict of interest between males
and females over the optimal matchings in mutual mate choice systems. Moreover, we observe
that the component of choice that confers the most benefit in this conflict is not choice in the
conventional sense of accepting or rejecting courtships, but instead the power to choose the
individuals to whom one displays.

Keywords: assortative mating, coalitions, game theory, group formation, mating systems, sexual
selection.

INTRODUCTION: A ONE-SIDED VIEW OF MATE CHOICE

Through the decision-making processes involved in mate choice, individual behavioural
mechanisms generate the evolutionary dynamics of sexual selection. Over the past two
decades, recognition that sexual selection is fundamentally a behavioural process has led to
the formulation of new classes of models that explicitly incorporate individual decision-
making (Janetos, 1980; Parker, 1983; Real, 1990, 1991; Drombrovsky and Perrin, 1994;
Getty, 1995; Wiegmann et al., 1996). These models aim to account for patterns of mating
within populations (and the resultant direction of sexual selection) as a consequence of
individual decisions.

In this paper, we address two of the most common assumptions underlying individual
choice models of sexual selection. In most mate choice models, one sex is treated as passive
(but see Parker, 1983, discussed below). That is, active choice is usually restricted to a single
sex. Since Bateman (1948), theories of mate choice have generally assumed that the female
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would be the choosy sex, since females are limited by resources for producing young while
males are only limited by access to potential mates. However, in some systems, males appear
to be the choosy sex (e.g. Manning, 1980). Regardless of which sex does the choosing in a
model where one sex is passive, the choosy sex makes decisions based upon the distribution
of fitness gains from potential mates balanced against the costs of competition and search
(Real, 1990; Wiegmann et al., 1996).

In some biological cases, the assumption that only one sex actively selects among mates is
reasonable. For example, in the mite species Tetranychus urticae, males guard duetonymph
females and prefer those females that are closest to eclosion (Everson and Addicott, 1982).
The females obviously have no potential role in choice here, since they are still in their
quiescent form.

However, mounting empirical evidence suggests that few systems are as simple as these
mites. Mate choice is seldom structured so that one side is entirely passive (Cunningham
and Birkhead, 1998). Instead, males and females are actively engaged in mutual choice
where each can potentially accept or reject the other. For example, crested auklets, Aethia
cristatella, engage in a mutual display of crest-ornaments during courtship. When Jones and
Hunter (1993) placed model auklets within the breeding colony, both males and females
directed their courtship displays to the models with the largest crests, suggesting mutual
mate selection. Recently, Kraak and Bakker (1998) have shown mutual mate choice in
sticklebacks, as discussed further below.

Mutual mate choice may be much more common than we think, and mate choice models
must be constructed that incorporate this important feature of sexual selection (Johnstone
et al., 1996). Using a game-theoretic approach, Parker (1983) was the first to outline
theories of mate choice that explicitly incorporate mutual choice. Parker’s models assume
that all potential mates are accessible at all times and there is no search among mates.
Real (1991) incorporated mutual choice into a sequential choice model that incorporated
searching behaviour. Parker’s model and Real’s model lead to similar conclusions and
generate some very important common features of mating systems that do not arise in
single-sex choice models, most notably assortative mating. In this paper, we expand on
Parker’s mutual choice approach, relaxing his assumption – discussed below – of uniform
preferences.

Current modelling efforts usually assume that all individuals of a given sex have the same
preferences; that is, that preferences are uniform (Parker, 1983; McNamara and Collins,
1990; Johnstone, 1997), or at most homotypic, such that individuals prefer mates similar to
themselves (Alpern and Reyniers, 1999). Such assumptions may be valid for sticklebacks.
Bright red males are choosy, and prefer the same large fecund females; similarly, females
share a common preference for the brightest-coloured males (Kraak and Bakker, 1998).
Nonetheless, in many systems we know that individuals vary considerably in their mating
preferences (Jennions and Petrie, 1997; Bakker et al., 1999; Widemo and Sæther, 1999).

Variation in mating preferences may be a consequence of variation in the experience and
condition of individuals within the population. For example, recent evidence suggests that
the mating preferences of the wandering albatross, Diomedea exulans, are correlated with
age (Jouventin et al., 1999). First-time breeders prefer mates of similar age, and widowed
birds prefer to mate with birds that have also lost mates. Real (1991) incorporated individual
variation in mate choice arising from a different source; in his model, variation in choice
is a consequence of varying costs across individuals, despite a preference structure that is
assumed to be the same across individuals. Genetics may also play a role; in recent years,
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a number of studies have investigated the importance of the major histocompatibility
complex (MHC) genes in determining the mating preferences of several mammalian
species, including humans. There is good evidence, at least in house mice, of negative
assortative mating by MHC type (see the review by Penn and Potts, 1999). Examples like
these indicate that variation in mating preferences may be a ubiquitous outcome of both
genetic and environmental heterogeneity.

Thus we are at a critical juncture in the formation of mate choice theory. Traditional
theory has focused primarily on individual choice behaviour, even though we suspect that
mutual mate choice is common. Traditional theory has generally ignored the consequences
of individual variation in mating preferences, even though we know there are both genetic
and environmental conditions that promote polymorphism in preferences. Consequently,
we need to develop a more comprehensive theory that incorporates mutual choice with
individual variation in preferences. In economics, an extensive literature has been developed
to treat structurally similar problems. We believe that the solutions developed there will
also have important biological implications. In this paper, we take the economic theory of
two-sided matching and apply it to the biological problem of mutual mate choice.

AN ALTERNATIVE APPROACH: TWO-SIDED MATCHING THEORY

Often, in economic systems, agents form pairs or groups: employers and employees, buyers
and sellers, schools and students. When both sides have preferences over the pairings
formed, predicting the outcome of the matching process becomes non-trivial. Which
pairings will occur? Which pairings will be stable? Which matching processes will generate
stable matchings? What sorts of strategic behaviour should individuals employ to achieve
their desired pairings? To answer these questions, game theorists and economists have
developed a theory of two-sided matching, in which agents are assigned preferences over
pairings or groupings, and the dynamics and stability of pair or group formation are
explored.

The two-sided matching problem was first formulated by Gale and Shapley (1962). They
presented a simple model in which college applicants have ordinal preferences over schools,
and colleges have ordinal preferences over applicants. How, given these preferences, could
college applicants be matched to schools so as to leave both the students and the colleges
as satisfied as possible? The authors derived a clever algorithm (described below) designed
to create efficient pairings. Their algorithm matches students and schools in such a way
that no student wishes to leave her current school for an alternative institution that would
be willing to admit her. Subsequent authors expanded upon Gale and Shapley’s work,
extending their theoretical framework while applying two-sided matching theory to
problems ranging from labour markets (Shapley and Shubik, 1972; Crawford and Knoer,
1981; Kelso and Crawford, 1982; Roth, 1982, 1984, 1990, 1991) to human courtship and
marriage (Knuth, 1976; Becker, 1981; Bergstrom and Lam, 1989; Bergstrom and Bagnoli,
1993) to the annual ritual of sorority rush (Mongell and Roth, 1991).

In a similar fashion, males and females during courtship and mating may form different
preferences based on the biological characteristics of the individuals. Female 1 may prefer
male 1 to male 2 or male 3, while female 2 prefers male 2 to male 1 or male 3. The interesting
dynamics arise because the males also differ among themselves in their preferences over
females. How are stable pairings established given this individual variation in mating
preferences?
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Terminology and definitions

To introduce this area of game theory, a number of definitions will be needed. Here, and in
many of the subsequent examples, we follow (closely, although in less formal fashion) both
the general notation and the basic line of presentation employed by Roth and Sotomayor
(1990) in their definitive monograph Two-sided Matching: A Study in Game-theoretic
Modeling and Analysis. For simplicity, we focus on the special case of pair formation from
two disjoint classes. We can envision these classes as the set of all males in a population,
and the set of all females in that population. Similarly, we can envision the pairings as
mating partners. For this reason, matching systems of this type are often called ‘marriage
markets’ in the economics literature. More complicated matching systems, some of which
are considered below, can be defined similarly.

Consider a population, each member of which falls into one of two sets: the set of all
males M = {m1, m2, m3, . . . , mj} and the set of all females F = { f1, f2, f3, . . . , fk}. Let each
individual mi or fi have a list of strict pairing preferences P over the individuals in the other
set. For example, a female fi might have preferences P( fi) = m1, m4, fi, m3, m2, meaning that
male m1 would be her first choice, m4 would be her second choice, and she would rather
remain ‘single’ (represented by pairing with herself, fi) than form a pair with either m2 or
m3. The preference of female fi for male m1 over m4 is expressed by the > fi

 symbol: m1 > fi
m4.

Male mh is said to be acceptable to female fi if she prefers pairing with mh to remaining
single – that is, if mh > fi

fi.
A matching

µ = �m1

f4

m2

f2

m3

f1

. . .

. . .�
is simply a list of all the pairings in the population (where having oneself for a mate means
that one remains single). We indicate the mate of an individual x under matching µ by using
µ(x) for short.

Now we are ready to consider the notion of the stability of a matching. An individual is
said to block the matching µ if he or she prefers remaining single to taking the mate assigned
by µ. A pair m and f are said to block the matching µ if they are not matched by µ, but prefer
one another to their mates as assigned by matching µ. In the above notation, (m, f ) is
a blocking pair if, and only if, f >m µ(m) and m >f µ( f ). Put another way, given matching µ, a
blocking pair is a pair that would willingly abandon their mates as determined by µ and
elope instead with one another. Finally, the matching µ is defined as stable if it is not
blocked by any individual or pair (Gale and Shapley, 1962; Roth and Sotomayor, 1990).
Much of two-sided matching theory is concerned with determining the conditions under
which stable matchings exist, and by what matching algorithms these matchings can be
achieved.

Readers familiar with economic theory may at this point be curious as to the relationship
between the concept of Pareto optimality and the stability of a matching. Pareto optimality
requires that no change exists that betters (or leaves equally well-off) every individual in the
population. The concept of a stable matching is stronger than that of a ‘Pareto optimal’
matching, in that every stable matching is Pareto optimal, but not every Pareto optimal
matching is stable. Pareto optimality requires that no two individuals wish to elope together
and would receive the consent of their partners. Stable matching, by contrast, requires that
no two individuals wish to elope together, whether or not their partners would consent.
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An example

It may be helpful to look at a concrete example. Consider a population consisting of three
females (Ann, Betty and Carol) and three males (Dave, Ed and Frank). The preferences of
each individual are given in Table 1.

In this matching system, there are two stable matchings. One (call it µ1) pairs Betty with
Dave, Ann with Ed, and Carol with Frank. The other, µ2, pairs Betty with Dave, Ann with
Frank, and Carol with Ed. Any other matching will allow at least one blocking individual or
pair. For example, the matching that pairs Betty with Frank, Ann with Dave, and Carol with
Ed has as the blocking pair Betty and Dave; in this matching, Betty and Dave would
willingly elope together. In fact, since Betty and Dave are one another’s first choices, any
matching µ� which does not pair them together will be blocked by this pair. If we are
interested in finding all stable matchings, we can remove Betty and Dave from the preference
list, yielding the reduced preference list given in Table 2.

In this very simple system, an interesting sort of conflict emerges. In mate selection
models, it is typically assumed that individuals of the same sex – competing with one
another for mates – have conflicting interests among themselves. In this two-sided matching
example, by contrast, the conflict of interest crosses sex lines. Ed and Frank share a
common interest, and together they find themselves in conflict with Ann and Carol. Ed
and Frank would both like to achieve stable matching µ1, while Ann and Carol would both
like to achieve stable matching µ2. Neither allows eloping pairs, but in µ1 the males get their
first choices (from the reduced preference list) and the females get their second choices,
whereas in µ2 the females get their first choices and the males get their second choices.

Table 1. Individuals and their pairing preferences: the full system

Individual First choice Second choice Third choice

Ann
Betty
Carol

Dave
Dave
Ed

Frank
Ed
Frank

Ed
Frank
Single

Dave
Ed
Frank

Betty
Betty
Carol

Carol
Ann
Ann

Ann
Carol
Betty

Table 2. Individuals and their pairing preferences: the reduced
system, with Dave and Betty – always one another’s first
choices – removed (see text)

Individual First choice Second choice

Ann
Carol

Frank
Ed

Ed
Frank

Ed
Frank

Ann
Carol

Carol
Ann
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This conflict of interest between the sexes (and common interest among members of the
same sex) is not merely a quirk of this particular example, but instead a general feature of
the two-sided matching models with two separate sexes and monogamous pairings. Which
stable matching occurs in a given biological system will depend on which sex dominates in
the choice structure. We will see this more clearly later when we consider the algorithms by
which stable matchings are achieved.

Two-sided matching under uniform preferences

When all preferences are uniform – that is, when all males have the same preferences over
females and vice versa – it is easy to see that a unique stable matching exists. To see this for
monogamous mating systems, label the members of each sex by the preferences of the other
sex (so that the first-ranking male m1 is the first choice of the females, m2 is the second
choice, etc.). Under this system, the only possible stable matching will be

�m1

f1

m2

f2

m3

f3

m4

f4

. . .

. . .�
Any other matching will have at least one pair composed of males and females with dif-
ferent ranks. When (mi, fj) is the lowest-numbered of these pairs, a blocking pair can be found
in either (mi, fi) (when i < j) or (mj, fj) (when j < i). Similar arguments hold for alternative
matching systems.

For monogamous mating systems, a unique stable matching exists even when only one sex
has uniform preferences. We can prove this by describing a matching procedure – a set of
rules by which a matching is generated – that always yields a stable matching. Suppose that
the male sex is the sex with uniform preferences. We can order the females by the males’
preferences, from most desirable f1 to the least desirable fk. Create a matching µ̂ as follows:
f1 gets her first choice of males, f2 gets her first choice from among the remaining males, and
so on. The matching µ̂ is clearly stable; no blocking pairs exist because every female has her
favourite male from among the set of all males who are not paired to a female more
desirable than her; every male has the most desirable female that will accept him. Moreover,
we can easily prove that any other matching µ ≠ µ̂ is unstable. Let fx be the first female
who does not get the mate she would have had in matching µ̂. She will be paired by µ to a
male worse than she got by µ̂, and so would be willing to elope with µ̂( fx), her mate under
matching µ̂. Because all females more desirable than fx have the same mate they had in µ̂,
male µ̂( fx) will have a mate less desirable than at µ̂. He will be willing to elope with fx and,
therefore, ( fx, µ̂( fx)) is a blocking pair for matching µ ≠ µ̂.

Gale and Shapley’s deferred acceptance algorithm

What happens when preferences are not uniform? One of the most remarkable results from
two-sided matching theory is that, even under non-uniform preferences, a stable matching
(or set of stable matchings) exists in every monogamous matching system. To prove this, it is
sufficient to describe an algorithm by which a stable matching can be constructed for any
such system. We need not suppose that pairing actually occurs by this algorithm in the
system we are considering. Rather, the algorithm simply serves as a tool in the proof that
a stable matching exists. Below, we outline the deferred acceptance algorithm, originally
presented by Gale and Shapely (1962).
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We designate one sex – male, in the description that follows – as the ‘courting’ sex.
Each male m displays to his first-choice female f; each female who has received one or
more displays rejects all but her favourite male, and keeps her favourite male ‘engaged’ for
the time being. The matching procedure then proceeds repeatedly through the following
steps.

1. Each male not currently engaged displays to his favourite female that has not already
rejected him. If no acceptable females remain, he remains unmated.

2. Each female who has received one or more courtship displays in this round rejects
all but her highest-ranked acceptable male. This may involve rejecting a previously
engaged male.

After a finite number of rounds, no new displays will be made (Gale and Shapley, 1962).
At this point, the algorithm terminates. All females are paired with the male to whom they
are currently engaged; individuals not engaged remain unmated. The matching µ generated
in this way is easily seen to be stable. No male wishes to leave his mate at µ for a female who
prefers him to her mate at µ, because each male reached his current mate by sequentially
courting females in order of preference. No female wishes to leave her mate at µ for a male
who prefers her to his mate at µ, because she will have already received a courtship display
from any male who is not matched to a female that he prefers to her.

Reversing the algorithm, so that the females display and the males accept or reject court-
ships, will also lead to a stable matching; this matching may be a different one than that
found by the male-courtship form of the algorithm. However, the set of individuals remain-
ing unmated is the same in every stable matching of any given monogamous mating system
(McVitie and Wilson, 1970).

APPLICATIONS

In this section, we consider three interesting avenues of inquiry arising from two-sided
matching theory. Our aim is not to provide a comprehensive treatment of the theory, but
rather to convey the general flavour of the two-sided matching approach, to illustrate the
power of this approach and to show how this theory can generate a number of interesting
and counterintuitive predictions.

Is monogamy unusually stable?

Comparative analysis of alternative mating systems has long been a topic of considerable
interest in evolutionary ecology (Andersson, 1994). Not only do mating systems differ
in organization and individual tactics, they might also differ in underlying stability.
As demonstrated in the previous section, at least one stable matching exists for every
monogamous pairing system. What about polygamous systems?

Gale and Shapley (1962) present an illustration analogous to polygamous mating: the
matching of students to colleges. They find that in polygamous systems a stable matching
will always exist, given two rather strict conditions: (1) each male must be paired with a
pre-determined number of females (or vice versa in polyandrous systems), although this
number can be different from male to male; and (2) interactions among females do not
affect preferences, in that each female is concerned only with the identity of the male with
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whom she will be mated, and not with the identities of the other females also matched to
that male; similarly, each male has preferences only over the individual identities of the
females, and not over pairs or triplets, etc., of females. An easy way to see that such systems
will always have a stable matching was suggested by Knuth (1976). Where each male mi

takes n(mi) females, replace male mi with n(mi) proxy males each sharing the preferences of
male mi. Applying the deferred acceptance algorithm for monogamous matching to this new
population, a stable polygamous matching is generated.

Conditions (1) and (2) above are reasonable for Gale and Shapley’s student–college
matching example, and may be adequate for some polygamous mating systems as well. In
blackbirds, many females pair with a single male, but all act as independent pairs (Beletsky
and Orians, 1996). More often, however, we suspect that these conditions will not be met in
biological mating systems. For example, the number of mates with whom a given male pairs
may depend on the identities and fertilities of those mates, violating the first condition.
When the number of mates taken by a given male is variable, a female may prefer to be the
sole mate of an otherwise less desirable male rather than to be the secondary mate of an
otherwise more desirable male, violating the second condition as well. In other biological
systems, polygamous sets are commonly related (e.g. siblings), again violating the second
condition.

When conditions (1) and (2) are relaxed, stable matching need not exist in a polygamous
system. In the Appendix, we present two examples of polygamous systems that do not
allow any stable matching. In the first example, males have preferences over pairs of females
rather than merely over individual females. In the second, females are concerned with the
identities of the other females with whom they will share their mate.

Of course, not all matching in biological systems takes place in the context of mate
choice. Among mammals, for example, members of the same sex often form pairs, trios
or larger groups to forage, hunt, deter predation or defend resources (Packer et al., 1991;
Gompper et al., 1997; Sterck et al., 1997; Waterman, 1997; Watts, 1998). We can apply
matching theory to these systems as well. Coalition formation systems such as these do not
necessarily allow the existence of a stable matching. Gale and Shapley (1962) again provide
an illustration. Consider four males – three adults A, B, C, and an adolescent D – seeking
to form mate-guarding coalitions. Male A prefers to ally himself with B, male B prefers
to ally himself with C, and male C prefers to ally himself with A. Each individual ranks
the youngster D as its last choice. No matching will be stable, because whoever of A, B or C
is paired with D will want to leave D, and one of the other two will be willing to form
a blocking pair. Similarly, three-way matching systems, in which individuals from three
separate classes (e.g. reproductive male, reproductive female and helper-at-the-nest) are
matched into trios, need not allow a stable matching (Alkan, 1986; Roth and Sotomayor,
1990).

Thus monogamous mating systems are indeed unusually stable, in the sense that, under
perfect information, they always allow at least one stable matching. Many other systems,
including polygamy and general coalition formation, may allow no stable matchings.
This generates testable predictions for the question of whether serially monogamous
systems will have different rates of partner turnover than do polygamous systems. In
the limit of perfect information and constant preferences, we would expect continual
break-up and remating in polygamous systems, because no stable matching exists. In con-
trast, we might expect stasis in a monogamous system, which must allow at least one stable
matching.
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However, the existence of a stable matching does not automatically imply that stasis will
be reached, even under perfect information. Although every monogamous mating system
must have a stable matching, the breakdown of unstable matchings by ‘eloping pairs’ does
not always lead to a stable matching. Instead, certain sequences of divorce and eloping
simply progress through a cycle of unstable matchings, returning to the starting point
(Knuth, 1976). Still, from any unstable matching in a monogamous mating system, there
exists some sequence of divorces and elopings which leads to a stable matching (Roth and
Vande Vate, 1990; but see Tamura, 1993).

Conflict of interest between the sexes

In the example on pp. 497–498, we noted a conflict of interest between the two sexes, and
common interests among the members of each sex, with regard to the preferred stable
matching. Here, we show that this was not a coincidence, but that instead such cross-sex
conflicts and within-sex common interests are general properties of monogamous two-sided
matching models. This is somewhat surprising, since males are seemingly in competition
with one another for females and vice versa.

When all males like matching µ at least as much as matching µ�, we say (following
the terminology of Roth and Sotomayor, 1990) that µ ≥M µ�. When, in addition, at least one
male strictly prefers µ, we write µ >M µ�. Similarly, where female preferences are concerned,
we write µ ≥F µ� or µ >F µ�. A stable matching µ is defined as M-optimal if no male prefers
any other stable matching µ� (parenthetically, note that some males may prefer certain
unstable matchings to even the M-optimal stable matching). F-optimality is defined
analogously. A mate is said to be attainable by an individual if the individual is paired
with that mate in some stable matching; an M-optimal matching pairs each male with his
favourite attainable mate, and an F-optimal matching pairs each female with her favourite
attainable mate.

Remarkably, despite the conflicting interests among males and among females when
non-stable matings are considered, in monogamous mating systems an M-optimal and an
F-optimal stable matching always exist (Gale and Shapley, 1962; Roth and Sotomayor,
1990). This means that, of all the possible stable matchings, all males are able to agree
unanimously on a consensus favourite stable matching. Similarly, all females are able to
agree on a consensus favourite, although it will generally not be the matching preferred by
the males. In fact, as we show below, they are typically antagonistic.

These authors also demonstrate that the male-courtship deferred acceptance algorithm
generates the M-optimal mating (and the female-courtship version generates the F-optimal
mating). In the male-courtship deferred acceptance algorithm, each male displays to females
in order of preference and one can prove that no male is ever rejected by an attainable
female; therefore, each male is paired with his most-desirable attainable female. (Again, note
that under this algorithm males will be rejected by any non-attainable females to whom they
propose and therefore may not be paired with their most-desirable female overall.) While
intuitively it might seem that females would be getting the best of the situation, in practice,
precisely the converse holds. Under this system, the optimal matching for the males as a
group – the M-optimal matching – would be generated. The implication of this result is
striking: The component of choice conferring the major benefit is the power to choose the indi-
viduals to whom one displays, not the power to choose whether to accept or reject courtships,
or even the power to keep suitors ‘engaged’ until a better alternative comes along.
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This result has intriguing empirical implications. We often assume that, because we see
females rejecting mates, female choice is dominating and females are determining the
mating structure of the population. Indeed, observing a male-courtship deferred acceptance
procedure, we would be prone to conclude that this is a ‘female choice’ system, because
females have the power to accept or reject males, and even to keep males on hold, stringing
them along only to be later rejected in favour of preferable suitors. In mutual choice
situations, however, the greatest power may lie in the males’ courtship behaviour, and the
stable mating structure might be determined mostly by what males are choosing to do in
terms of display.

Moreover, the M-optimal matching is not only the best stable matching for the males,
it is also always the worst stable matching for the females (Knuth, 1976). In fact, male and
female preferences conflict in this way over any pair of stable matchings, not just the M-
and F-optimal ones. Given µ and µ� are two stable matchings, µ > M µ� implies that µ� > W µ
and vice versa (Roth and Sotomayor, 1990). Therefore, while all males reach consensus
regarding the best stable matching, as do all females, the sexes inevitably oppose one
another in their preferences across alternative stable matchings.

We can also view the conflict at the level of individual spouses. Knuth (1976) proves
the following theorem. Consider two individuals m1 and f1, paired together under stable
matching µ but paired with fa and ma respectively under some other stable matching µ�.
It must be that either f1 > m1

fa and ma > f1
m1, or fa > m1

f1 and m1 > f1
ma. That is, given

two individuals paired under a stable matching and the existence of an alternative stable
matching, one mate prefers the matching that keeps them together, and one prefers the
matching that separates them. In any stable matching where you prefer your actual mate to
another attainable mate, your mate necessarily prefers some other attainable mate to you!

Strategic issues: Should I lie about my preferences?

Thus far, we have considered the conditions under which stable matchings will exist, and we
have characterized some of the interesting properties of those stable matchings. We have yet
to say anything about how individuals should behave strategically so as to achieve desirable
matchings, stable or otherwise. In this subsection, we begin to explore questions of this
sort.

Consider first the idealized class of mating systems in which all participants have
complete information. That is, all participants (1) have sufficient information to rank the
desirability of all members of the opposite sex, (2) know their own desirability because they
know the preferences of each member of the opposite sex, and (3) know the preferences of
each member of the same sex.

We begin by considering a male-courtship system, as described for the deferred accept-
ance algorithm. Will a male ever benefit by deceptive behaviour, displaying to a female who
is not his first choice among the females to whom he has not yet displayed? Will a female
ever benefit by deceptive behaviour, rejecting males who are preferred to currently engaged
males, accepting suitors when the currently engaged male is preferred, remaining single
despite receiving a courtship from an acceptable male, or engaging an unacceptable male
despite a preference for remaining single?

Roth (1982) demonstrated that, under the male-courtship matching procedure, males will
never benefit from deceptive behaviour. In game-theoretic terms, the straightforward
behaviour of displaying to the first-choice female that has not yet rejected the male is a
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dominant strategy. Females, however, can benefit from deceptive behaviour in this system
whenever the F-optimal and M-optimal matchings differ. Consider the simple female choice
strategy of rejecting all but the male with whom the female would be matched under the
F-optimal matching. When all females follow this strategy, under the deferred acceptance
procedure with male courtship, the F-optimal matching is generated instead of the M-
optimal matching. The females are in effect cooperating to force the male-courtship system
to their shared interest, the F-optimal matching, and by definition some or all females are
better off for having behaved ‘deceptively’.

A potentially stable matching procedure is a procedure, such as the deferred acceptance
algorithm, that will always generate a stable matching if no individual behaves deceptively.
The Impossibility Theorem for two-sided matching (Bergstrom and Manning, 1982; Roth,
1982; Roth and Sotomayor, 1990) states that no potentially stable matching procedure
can possibly remove all incentive for deceptive behaviour. The implication is striking:
regardless of the mating system and matching procedure, either an unstable matching will be
generated, or there will be an incentive for some individuals to behave in a circumspect
manner regarding their actual mate preferences, or both. Moreover, when individuals
behave deceptively, potentially stable matching procedures do not necessarily generate
stable matchings. The Impossibility Theorem, therefore, limits the efficacy of matching
mechanisms for generating matchings, when individuals employ strategic (sometimes
deceptive) behaviours.

To this point, we have assumed that all individuals have perfect information. In practice,
individuals may face imperfect information in many forms. For example, a particular female
may be hindered by uncertainty about her own preferences because she is uncertain about
the quality of potential partners. She may be uncertain about the distribution or identities
of potential partners. She may face uncertainty about the preferences of potential partners
(and thus her own ‘rank’, in terms of desirability). Finally, she may face uncertainty about
the preferences of the other females. Without all of this information, she will be unable to
compute the F-optimal matching and, therefore, be unable to employ the strategy described
above that ensures the F-optimal matching under the male-courtship form of the deferred
acceptance algorithm. What sort of strategic behaviour should she employ, given imperfect
information in any of these forms? While this question is too involved to consider here,
it has been treated in detail by Roth (1989), the results of which are summarized in Roth
and Sotomayor (1990). These results may be of considerable interest to those studying mate
choice tactics.

DISCUSSION

In this paper, we have outlined a theoretical framework – two-sided matching theory – that
can be employed to further our understanding of mate choice systems, particularly given
the prevalence of non-uniform preferences and active choice by both sexes. Within this
framework, we presented an appropriate stability concept for pairing via mutual mate
choice. The theory allows us to compare the relative stability of alternative mating systems,
to highlight systematic conflicts of interest between the sexes, to suggest how the matching
dynamics may aggravate or ameliorate these conflicts, and to generate predictions about
optimal individual tactics in mutual mate choice systems.

As discussed above, the examples considered here have been concerned predominantly
with systems in which all participants have perfect information and in which search is not
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necessary. While such an analysis provides a useful baseline for the consideration of stability
and strategy in mate choice systems, in practice the participants will rarely have perfect
information. Ultimately, successful application of two-sided matching theory to mate
choice will require an understanding of the degree to which the results presented above hold
under various forms of incomplete information.

Within two-sided matching theory, there is an inevitable conflict between the M-optimal
and F-optimal matchings. In obligately sexual organisms, however, the total number of
offspring produced by males is necessarily equal to the total number of offspring produced
by females, in any given breeding season. Therefore, there must be an equality in fitness
for males and females. While preferences are assumed to be exogenous in the economics
literature, evolutionary biologists typically assume that preferences are shaped by natural
selection so as to maximize the individual’s reproductive fitness. If so, males and females are
limited in what constitutes reasonable mating preferences. It is a major open question
whether, given these constraints, there will still be an inevitable conflict of interest between
the sexes, and whether there will still be incentives for deceptive individual behaviour in the
matching process. Instead, natural selection may cause a convergence of the M-optimal and
F-optimal strategies. We do not yet know.

As Johnstone (1997) has indicated, one of the appeals of sequential search theory is
its ability to generate readily testable hypotheses that are open to empirical investigation.
Often these tests can be undertaken through direct manipulation of the population (see
Wiegmann et al., 1996, for a thorough discussion of the testable distinguishing features
of different models of sequential mate choice). In a similar vein, we hope that matching
models of mate choice will generate specific testable predictions about mating markets.
The simple models that we have discussed here do lead to some general hypotheses,
although they are not as clearly defined as in sequential search. Nonetheless, we feel that
these general hypotheses should generate some new approaches to field manipulations of
mating populations. Three particular questions emerge as potential areas for empirical
validation.

First, the stability of the matching can be assessed through experiments in which
individuals are selectively removed from the population (e.g. Smith et al., 1996; Lifjeld
et al., 1997; Sheldon et al., 1999). If a dominant male is removed, for example, does
a new matching arise where all males are simply shifted up one place in the system, or is
there a complete reshuffling of positions in the hierarchy? Uniform translation upwards
may indicate a system characterized by uniform preferences; a reshuffling would be more
characteristic of non-uniform preferences. Blum et al. (1997) explore the dynamics of these
vacancy chains in a labour market context: what happens when a senior-level employee
retires and a replacement must be found internally, or lured away from another firm?
The new replacement will herself vacate a position, requiring an additional search, and so
forth, until the market equilibrates. Blum et al. briefly review prior work on the subject
(sociologists have studied vacancy chains in occupations ranging from pastors and rabbis to
NCAA football coaches to insane asylum superintendents) and use two-sided matching
theory to model this process. Many of their results should apply equally well to vacancy
chains in mating systems.

Secondly, as we have indicated, the exact stable matching generated from F-optimal
choice will be different from the matching derived through M-optimal choice. Con-
sequently, we should see major alterations in the stable matching if we could alter which sex
is dominating the choice patterns. This may be possible through manipulations of one sex
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or the other. For example, in insect systems where males offer nuptial gifts, the male chooses
females on the basis of body size and the female chooses males on the basis of the size
of their nuptial gift. The dominant sex that controls choice might be manipulated by
controlling the availability and distribution of nuptial gifts.

Lastly, we suggest that the overall stability of mating system pairings may be quite dif-
ferent depending on the type of mating system. Two-sided matching theory, for example,
suggests that polygamous mating systems have a great turnover rate in pairings than serially
monogamous mating systems. One avenue for testing two-sided matching theory will reside
in the comparative analysis of mating system stability across different mating system
types.

As a final note, we wish to echo the concluding remarks of the original paper on two-
sided matching. In that paper, Gale and Shapley (1962) emphasized the accessibility of this
type of theory. Throughout this paper, we have employed only simple mathematics – never
even using calculus, let alone more sophisticated forms of analysis – and yet we have been
able to describe a number of powerful and counterintuitive results from the economics
literature, and to derive a few extensions of our own. Although we have not presented
specific examples in detail (coalition formation, structured forms of polygamy, etc.), we
stress that one can derive interesting results regarding the stability of such systems or
strategic behaviour in them without employing advanced mathematical techniques. Two-
sided matching theory, in essence, is based upon the careful application of structured
thought to formal descriptions of matching systems.
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APPENDIX

Polygamous mating systems need not allow any stable matchings, when the number of females paired
to each male can vary across matchings. Roth and Sotomayor (1990) give the following illustration
(example 2.7 in their book). Consider a system with two males M = {m1, m2} and three females
F = { f1, f2, f3}. Females are concerned only with the identity of the male to whom they are matched
(and not with how many other mates that male has). Females f1 and f2 prefer m2 to m1, while female
f3 prefers m1 to m2. Males desire at most two mates, and have preferences { f1, f3} >m1

{ f1, f2} > m1

{ f2, f3} > m1
{ f1} > m1

{ f2} and { f1, f3} > m2
{ f2, f3} > m2

{ f1, f2} > m2
{ f3} > m2

{ f1} > m2
{ f2}. The reader can

verify that no stable matching exists in this system (see Roth and Sotomayor, 1990, for details).
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Even when the number of females paired to each male is fixed, stable matchings need not exist, if
females are concerned with the identities of the other mates of the male to whom they are paired. For
example, consider a system with two males M = {m1, m2} and four females F = { f1, f2, f3, f4}, where, by
the matching rules, each male takes exactly two mates. The two males have identical preferences,
preferring females in the order f1 > f2 > f3 > f4. Females prefer any pairing to remaining single, but are
more concerned with the identify of the other female with whom they share a male than with the
identify of the male himself: f1 prefers to share either male with f2 to any other arrangement. Similarly,
f2 prefers to be with f3, f3 with f4, and f4 with f1. Although these conditions fully specify neither male
nor female preferences, they are sufficient to guarantee that a blocking pair always exists. Note that
any male not paired to both f1 and f2 will willingly form a blocking pair with either of these females.
When f1 does not share a male with f2, she will abandon her mate for the other male, to be with f2.
When f1 does share a male with f2, then f2 will abandon this mate for the other male, to be with f3.


