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Patterns of reproductive uncertainty can have an important influence on population
dynamics. There is a crucial distinction between what we describe here as aggregate
uncertainty (in which reproductive output in each generation is correlated among the
individuals in a population) and idiosyncratic risk (in which reproductive output is
independent across individuals). All else being equal, populations experiencing idiosyncratic
risk enjoy a higher asymptotic growth rate than do those experiencing aggregate uncertainty.
Therefore individuals in populations of the former type will have a competitive advantage
over individuals in populations of the latter type. Applying this distinction to models of
randomly fluctuating environments, we point out that genetic variation among offspring can
serve to reduce aggregate uncertainty, transforming it into a more idiosyncratic form of risk.
We show tht this transformation underlies the dynamics observed in several previous models
of the role of outcrossing in the evolution of sex.
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1. Introduction

The fitness concept in theoretical biology is
commonly used to predict the results of
competition among different types of individ-
uals. In making such predictions, one cannot
always rely on expected fitness in a single
generation; rather, it has long been known that
one must consider the degree of variation in
fitness over time.

Dempster (1955) was perhaps the first to
demonstrate that long-term success under fluctu-
ating environmental conditions is determined by
the geometric rather than arithmetic mean fitness
over time; many subsequent papers (reviewed by
Gillespie, 1991) have refined these results.
Lewontin & Cohen (1969) give an example of a
fitness distribution for which the expected
population size grows indefinitely while the
probability of population extinction goes to one.

Indeed, population growth depends on more
than simply the moments of the fitness
distribution; the dynamics of populations experi-
encing fluctuations in fitness will depend
critically on the correlations in fitness among
individuals (Seger & Brockmann, 1987). For this
reason, it is crucial to distinguish between two
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different types of uncertainty in reproductive
output which may be faced by individuals. We
borrow terminology from the economics litera-
ture (e.g. Kreps, 1990), defining the first of these
types, idiosyncratic risk, to be risk which is
independent of that faced by other individuals.
We contrast this with a second type which we call
aggregate uncertainty: risk which is perfectly
correlated among individuals (cf. Yoshimura &
Clark, 1991). For example, herbivory could
create primarily idiosyncratic risk for plants in a
lightly grazed field, whereas drought would affect
all individuals or none, and thus act as a form of
aggregate uncertainty. Even though an individ-
ual’s immediate distribution of offspring number
might not be affected by whether a particular
source of risk is idiosyncratic or aggregate, the
nature of the risk will systematically affect the
distribution of offspring number in all sub-
sequent generations. Notice that here spatial
fluctuations in the environment (in the form of
herbivory) act as a source of idiosyncratic risk,
whereas temporal fluctuations (in the form of
climatic change) act as a source of aggregate risk.
This is a common feature of ecological models.

The distribution of genetic variation among
offspring, which depends in part on patterns of
reproduction, may affect the levels of idiosyn-
cratic and aggregate risk faced by members of a
population. In this paper we explore the role that
genetic variation can play in reducing the
aggregate risk to a population. In particular, we
argue that environmental factors which are
sources of aggregate risk to asexuals may to
some extent constitute idiosyncratic risk to
sexually reproducing individuals. Consideration
of the different impacts of idiosyncratic risk and
aggregate uncertainty on sexuals and asexuals
thus contributes to a deeper understanding of
why sex, or more precisely, outcrossing, is
maintained through evolutionary time. (The
models examined in this paper are all single-lo-
cus models, and as such the dynamics are
affected by outcrossing but not recombination).

We begin with a brief review of relevant results
on population dynamics in randomly fluctuating
environments. We then turn our attention to
genetic models in randomly fluctuating environ-
ments. We point out that, in such models, genetic
variation among offspring can reduce the level of

aggregate uncertainty, effectively making the risk
more idiosyncratic. As illustrations, we consider
the random environment models of Weinshall
(1986), Roughgarden (1991), and Hines &
Moore (1981) which were originally proposed
because they favor outcrossing over asexual
reproduction. We show that the advantage
experienced by outcrossing types in those models
stems from the fact that their offspring generally
experience lower aggregate uncertainty than do
those of their asexual counterparts.

1.1.    

   

There are a number of ways in which we might
compare the long-term success of populations
subject to environmental uncertainty. Let us
consider which of these will be most useful as a
measure of density-independent population
growth. In models of this kind, the growth rate
is sometimes expressed as the root of expected
population size (E[zT](1/T), where zT is the
population size at time T. This represents an
extension to the random environment case of the
measure proposed by Dempster (1955) and
Haldane & Jayakar (1963) who studied fixed
environmental sequences. However, when com-
paring the growth rates of two populations in a
random sequence of environments, this measure
can be misleading, because it is often dominated
by the extreme right-hand tail of the distribution.
That is, the expectation of the population size is
often vastly inflated by rare events in which the
population is wildly successful. When trying to
predict the outcome of competition between
populations, we are concerned not so much with
the margin of victory as with the probability of
victory. It is more useful in this context to
compare the values of E[(zT)(1/T)] (Gillespie,
1973; Tuljapurkar & Orzack, 1980; Gillespie,
1991; Haccou & Iwasa, 1995). This measure is
determined primarily by the most common
values of the distribution of population sizes. In
the examples below, z(1/T)

T converges to a constant,
so that taking the expectation is unnecessary. It
is then equivalent to consider the measure
(1/T)ln(zT), which also converges with prob-
ability 1 to a constant.

In the following example, we will refer to the
quantity (E[zT])(1/T) as the ‘‘geometric mean
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expected growth rate’’ and to E[(zT)(1/T)] as the
‘‘average long-term growth rate.’’ When consid-
ering the log form of the latter measure, ln zT /T],
we will use the label ‘‘long-term log growth
rate’’. We now describe two populations with
differing patterns of risk, and show both the
distinction between these two growth measures
and the distinction between different forms of
risk.

Consider an environment with two states, I
and II, each occurring independently in each
generation T=1, 2, . . . with probability 1/2.
Individuals denoted ‘‘Type A’’ produce one
offspring in state I and two offspring in state II.
There is no density dependence. Let zT(A) be the
number of individuals of type A at time T.
Clearly, zT(A) : a with probability 1, as
T : a. To compute the long-term log growth
rate of type A, we note that zT(A)=2n(T), where
n(T)$0, . . ., T is the number of times that state
II is observed in T periods. The strong law
of large numbers implies that n(T)/T : 1/2
with probability 1 as T:a. Hence 1/T
log(zT(A)) : z2 with probability 1 as T : a.

Individuals denoted ‘‘Type B’’ inhabit the
same environment, but are not affected by the
random fluctuations. Instead, each individual
procuces one or two offspring with probability
1/2 in both environments. Note that the
immediate offspring distribution of type B
individuals is identical to that of type A
individuals. Defining zT(B) as the number of
individuals of type B at time T, we have again
that zT(B) : a with probability 1 as T : a.
The theory of branching processes implies that
zT(B)/(3/2)T converges to a strictly positive
random variable W, with probability 1, as
T : a (see Athreya & Ney, 1972, Theorems
1–2). This implies that

1
T

ln(zT(B)) : ln0321 (1)

with probability 1, as T : a, so that the
constant ln(3/2) is the long-term log growth rate
of Type B.

This measure of the growth rate reveals the
difference between the long-term consequences
of idiosyncratic and aggregate risk. That is, it

follows that

1
T

ln0zT(B)
zT(A)1: ln0 3

2z21q 0 (2)

with probability 1, as T : a, so that

zT(B)
zT(A)

: a

with probability 1. Thus Type B ultimately
dominates the population in this appropriately
compelling sense.

Despite this result, notice that the expected
sizes of the two populations are always equal,
both being (3/2)T in period T. The geometric
mean expected growth rate is 3/2 in both cases
and therefore this measure fails to distinguish
between the two populations. Although the
number of occurrences of state II in each
environmental sequence is symmetrically dis-
tributed, the size of the Type A population has
a skewed distribution, with its right-hand tail
contributing disproportionately to the expec-
tation. This occurs because the size of the Type
A population is exponential in the number of
occurrences of state II and thus the median of the
Type A distribution falls increasingly below the
mean as T increases. Remarkably, in the limit, all
of the probability mass of the Type A
distribution falls below its own mean and,
indeed, also below all of the probability mass of
the type B distribution.

The intuition for the distinction between
aggregate and idiosyncratic risk in this example
can be recast as follows. In the case of
idiosyncratic risk, as the population size becomes
large, the growth rate in each period converges
to 3/2, by the law of large numbers. It follows
that the average long-term growth rate then also
converges to 3/2. By contrast, in the case of
aggregate uncertainty, the growth rate is always
stochastic, being either 2 or 1 with equal
probability. As T goes to infinity, the fraction of
2s observed up to time T converges to 1/2 with
probability 1 by the strong law of large numbers.
It follows that the average long-term growth rate
converges to z2.

While this example includes no density-depen-
dent effects, the point illustrated would survive
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the incorporation of environmental limitations
on population size. From this simple example, it
becomes clear that idiosyncratic risk and
aggregate uncertainty can have dramatically
different evolutionary consequences. This theme
is central to our paper.

We now examine a general model of
population growth in the presence of environ-
mental uncertainty. Consider an asexual popu-
lation whose generations are discrete and
non-overlapping, represented by a branching
process. An environment is selected by a random
process and, conditional on this environment,
each individual produces some number of
offspring drawn from an i.i.d. distribution (e.g.
see Athreya & Ney, 1972). Again there is no
density dependence in this system. This model
incorporates both aggregate uncertainty of the
population due to shared environment, and
idiosyncratic risk experienced separately by each
individual.

There is a fixed, finite set S of possible
environmental outcomes, designated E1, E2, . . .,
ES. Let the stochastic process generating the
environments in different generations be
stationary and ergodic. Suppose the stationary
frequencies of these outcomes are p1, p2, . . ., pS,
respectively, where ps e 0 for all s, and aS

s=1

ps =1. At time t, the random variable jt is the
current state of the environment.

The number of offspring produced by each
individual at time T is a random variable, the
distribution of which is determined by the
realization of jT. Let pj(Es) be the probability of
exactly j offspring surviving in environment Es,
where s$41, . . ., S5. Conditional on Es, the
offspring distribution is given by p0(Es), . . .,
pB(Es)e 0, where aB

j=0 pj(Es)=1, and B is the
largest possible number of offspring. The
reproduction of each individual is independent
of that of other individuals conditional on the
environment. Define the expected number of
offspring generated by an individual in environ-
ment Es as m(Es)=aB

j=0 jpj(Es).
Under such a model, it can be shown that the

long-term log growth rate, r is given by

r= s
S

s=1

psln(m(Es)). (3)

Similar expressions have been obtained by
Gillespie (1973), Cohen (1993), Haccou & Iwasa
(1995), Sasaki & Ellner (1995), and Robson
(1996). The value of r is directly related to the
probability of extinction. In the subcritical case
where rQ 0 the probability of extinction is 1.
This is also true in the critical case where r=0
(subject to a mild non-degeneracy condition). In
the supercritical case where rq 0, the prob-
ability of extinction is strictly less than one (see
Athreya & Ney, 1972, 1a and 1b; Theorem 4). It
can be shown (Robson, 1996) that these results
hold even starting from a small initial population
size.

The crucial point here is that the long-term log
growth rate r separates idiosyncratic risk
(realized fitness, depending on Es) from aggre-
gate uncertainty (ps). Since the logarithm is a
concave function, population growth is more
rapid when there is an equal risk in all
environments, than when some environments are
better than others (provided that the average
itself remains the same). In other words,
population growth is greater when individuals
face risks independent of each other than when
risks are shared (see also Seger & Brockmann,
1987 in this context).

2. The Role of Genetic Variation in a
Random Environment

In the previous section, we discussed a simple
model which highlights the way that the
distribution of risk can impact population
growth. That model was concerned with
monomorphic population dynamics and ignored
the possibility of genetically different and
sexually interacting individuals. In this paper, we
argue that outcrossing affects the distribution of
genetic variation and that the presence of genetic
variation in turn impacts the distribution of risk
in a population, making an outcrossing popu-
lation seem more idiosyncratic than an otherwise
equivalent non-outcrossing population.

Consider a sexual population of an annual
plant. In each year, the environment might be
unpredictable: perhaps warm and wet, perhaps
cool and dry. If an individual produces offspring
which are all genetically uniform, all individuals
are affected similarly by the environmental
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conditions and therefore this constitutes purely
aggregate risk. If, in contrast, a parent produces
offspring with a mixture of genotypes, each of
which is best-suited to a different environment,
different individuals are affected differently by
the environmental conditions and thus some of
the aggregate uncertainty is replaced by idiosyn-
cratic risk.

It follows from our results in the previous
section that a population with little genetic
variation at the loci under fluctuating selection is
highly susceptible to extinction under such a
scenario. If only one or a few distinct genotypes
are present, the effects of aggregate uncertainty
on population dynamics become very important.
In order to prevent uncertainty from becoming
fully aggregate, it is essential that the population
maintain sufficient levels of genetic variation. As
such, it will be important to determine whether
a population can maintain these levels of
variation over an extended period of time.

We now examine these issues using a genetic
model of evolution in randomly fluctuating
environments (Weinshall, 1986). We investigate
genetic variation and aggregate uncertainty in
that particular model, and show that an
outcrossing population is able to maintain
enough variation to allow indefinite population
survival, despite the fact, as we show later, that
a selfing or genetically monomorphic population
could not survive in the same environment.

We consider the model of Weinshall (1986,
also discussed in Eshel & Weinshall, 1987 and
Weinshall & Eshel, 1987), restricting our
attention at first to a population of randomly
mating sexual diploids. In this model, the
population experiences one of three randomly
chosen environments, labelled I, II, or III, in
each generation. (Weinshall also considers a
two-environment model; there, outcrossing is not
favored.) This environment is chosen indepen-
dently at each date with a probability of 1/3 for
each possibility. We consider a single selected
locus with three possible alleles, A, B, and C.
Each allele is advantageous in a different
environment: alleles A, B, and C being favored
in environments I, II and III, respectively. There
is no mutation. An individual with no copies of
the allele favored by the current environment has
zero fitness. The fitness table is given in Table 1.

Weinshall’s model was originally framed in a
density-dependent setting, with a fixed popu-
lation size. However, here we consider the ‘‘hard
selection’’ case, in which the fitnesses shown in
Table 1 are absolute, and the population size is
allowed to change without density dependence.

The density-independent setting, though not
strictly realistic, has the important advantage
that it allows us to address the question of
long-term population survival. It is not entirely
convincing to prove that sexuals can outcompete
asexuals in a soft selection model, if the
long-term survival of the sexuals is guaranteed
only by the assumption of a fixed population
size.

One implicit aspect of this table deserves
mention. The fitness values x and y reflect
expected reproductive success conditional on the
corresponding environment. For reasons similar
to those discussed above, this is an appropriate
measure of average fitness in a large population
if the underlying conditional distribution of
offspring is idiosyncratic. That is, each of a large
number of individuals of a particular genotype
enjoys reproductive success obtained by an
independent draw from the same distribution
conditional on the environment. This particular
source of risk will not be considered further.

Suppose that the numbers of copies of alleles
A, B and C are initially a, b and c, respectively.
Denote by ai, bi and ci the number of copies of
each allele in the next generation, conditional on
the occurrence of environment i=I, II, or III.
As a consequence of random mating, the
population genotype frequencies are in
Hardy–Weinberg proportions prior to selection.

T 1
Genotype fitnesses in environments I, II, and III.
Here xr yr 0. Notice that when x=y, the
alleles are in effect dominant, and when y=0, the

alleles are recessive
I II III

AA x 0 0
AB y y 0
AC y 0 y
BB 0 x 0
BC 0 y y
CC 0 0 x



(a) Probability density at t=0 (b) Probability density at t=1

(c) Probability density at t=2 (d) Probability density at t=3
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F. 1. Starting with a uniform distribution of allele frequencies over the simplex at time t=0, application of the
recursions for Weinshall’s model with x=2y gives allele frequencies uniformly distributed over the 3t shaded regions of
the Sierpinski triangle at time t. Notice that, in each generation, the area of the simplex with positive probability density
decreases to 3/4 of its previous value and, correspondingly, the probability density at all non-zero points increases by 4/3.

Defining N= a+ b+ c, the recursion for allele
copy-number, conditional on the occurrence of
environment I, is

aI = a(ax+ by+ cy)/N

bI = aby/N (4)

cI = acy/N

Similar recursions hold for environments II
and III. We begin the analysis by showing how
the level of aggregate uncertainty depends on
allele frequencies. Let p, q, and r be the
frequencies of alleles A, B, and C, respectively
(i.e. p= a/N, q= b/N, r= c/N and
p+ q+ r=1). Then the expected fitness in
environment I is

xp2 +2y(pq+ pr).

Likewise, the expected fitnesses in environments
II and III are xq2 +2y(qp+ qr) and
xr2 +2y(rp+ rq), respectively. Thus, for
example, in the special case where x=2y, the
expected population fitness is x/3 for all values
of p, q, and r, since each environment arises with
probability 1/3.

However, as argued previously, expected
fitnesses can be misleading when we wish to
predict long-term survival, or the outcome of
competition between two types. In a genetic
model such as Weinshall’s, population growth in
each generation depends not only on the
environment, but also on allele frequencies.
Hence, to understand the process of long-term
growth in the Weinshall model, it will be
necessary to know what happens to allele
frequencies over time.



(a) (b)

(c) (d)
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In order to analyse the evolutionary trajectory
of allele frequencies in this system, we make use
of the two-dimensional simplex in Fig. 1(a). Each
point within the simplex represents a possible set
of the allele frequencies, p, q, and r, each of
which is given by the distance from one edge.
First, consider Recursion (4) with x=2y. The
application of this recursion, with equal proba-
bilities of each environment, corresponds to the
process of randomly selecting a vertex of the
simplex, and moving half-way from the current
position toward this vertex on a direct line. This
procedure generates the allele frequencies in the
next generation, and we repeat the procedure to
generate the allele frequencies in subsequent
generations.

If the probability density of the allele
frequencies at time t=0 is given by a uniform
distribution over the simplex, then at time t=1
after following this rule, the probability density
of allele frequencies will be a uniform distri-
bution over the region shaded in Fig. 1(b).

Continuing to apply the rule, the probability
densities at times t=2 and t=3 will be uniform
over the shaded regions in Fig. 1(c) and 1(d),
respectively. The fractal structure representing
these probability distributions is known
as the Sierpinski Gasket (Mandelbrot, 1982).
The allele frequencies at time t are uniformly
distributed over the Sierpinski triangle with
3t distinct shaded regions, as is proven in
Appendix A.

We can also examine the allele frequency
distributions for other values of x and y. Several
examples are shown in Fig. 2.

It is evident that the system spends essentially
none of its time near the center of the simplex in
any of these figures. Yet it is clear that this is the
one place where the population’s aggregate
uncertainty is low, since the population is equally
suited to any environment. Instead, as time
passes, the probability mass of the frequency
distribution accumulates near the edges of the
simplex. Here, at the edges, aggregate uncer-

F. 2. Allele frequency distributions for (a) x= y/2 (heterozygote advantage), (b) x= y (complete dominance), (c)
x=2y, and (d) x=4y.
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tainty is great, because at least one of the
environments can devastate the population.

So what happens to long-term population
growth under this model? Let us return, for the
sake of illustration, to the case where x=2y.
Growth in each generation is a function of the
environmental outcome, and the three allele
frequencies p, q, and r. Suppose the allele-fre-
quency simplex is divided into a series of regions.
If in a particular generation we know the
environmental outcome and the region on the
simplex in which the population currently lies,
we can bound the population growth in that
generation.

By analogy with the previous section, consider
a new, expanded set of ‘‘environmental states.’’
Here, each state is the current environmental
outcome combined with the current region in
allele-frequency space. (That is, for some k, we
characterize the environmental state by the
vector of the previous k environmental out-
comes). We can place an upper bound on the
long-term log growth rate r for particular values
of x and y= x/2 as follows. Split the simplex
into 3k shaded regions [as in Fig. 1(d), which
shows the case k=3] yielding 3k+1 newly-defined
environmental states. For each of the new
environmental states, there is a maximum
log-growth rate. From the results in Appendix A,
if the Sierpinski Gasket has 3k shaded triangles,
then the frequency of visits to each triangle
converges to 3− k. That is, after T generations, as
T : a, if each triangle is visited n(T) times,
then with probability 1, n(T)/T : 3− k.

To place an upper bound on r, we can use eqn
(1), inserting the maximal log growth rate for
each environmental state. Hence, since each
environmental state arises with equal prob-
ability, r is simply the arithmetic mean of the
maximal log growth rate for each of 3k+1

environmental states. By increasing the number
of shaded regions, we can obtain increasingly
more stringent upper bounds. Of course, if an
upper bound on r is less than zero, population
extinction is guaranteed.

Unfortunately, it is not possible to use such a
method to place a lower bound on r for the
Weinshall model. This is because when there are
zero-fitness entries in the fitness matrix, the log
growth-rate is not bounded below in those

regions which lie at the edge of the allele-fre-
quency simplex. However, the following theo-
rem, which uses a different line of proof
(Appendix B), shows that indefinite population
persistence is possible in the Weinshall model,
even under conditions of hard selection.

Theorem 1
Define >zt>= at + bt + ct. Fix y= kx, for any

kq 0. For any Kq 0 there exists an Lq 0 such
that whenever xqL,

lim inf
T : a

1
T

ln>zT>eK. (5)

That is, the long-term log growth rate can be
made arbitarily large by an appropriate choice of
the homozygote fitness x. In particular, it is
possible for an outcrossing population to survive
indefinitely in the Weinshall model. This is by no
means self-evident, given the results summarized
in Fig. 2 in which we showed that even sexual
populations tend to exhibit allele frequencies
near the edges of the simplex and hence
experience strikingly high levels of aggregate
risk.

2.1.   - 

 

While the Weinshall model does not permit
the calculation of lower bounds on r using the
simpler method, there are other genetic models
of evolution in random environments in which it
is possible to compute both upper and lower
bounds. This can be done by splitting the
genotype frequency space into a finite number of
regions and calculating (1) upper and lower
bounds on the log-growth rate for each region,
in each possible environment, and (2) calculating
(or estimating by simulation) the amount of time
that the population spends in each region of the
genotype space. If upper and lower bounds exist
for all regions, and the visitation frequency of
each region converges, then one can place
bounds on r. These arguments indicate an
algorithm for estimating long-term log growth
rates in models of genetic variation in random
environments, as follows.

Suppose that the genotype frequency space is
divided into a covering partition of n connected,
disjoint regions. Suppose furthermore that there
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are S environments of which the s-th environ-
ment occurs independently with probability ps.
Let the maximum growth rate (i.e. ignoring
idiosyncratic risk) in region i, conditional on
environment s, be Mi(Es). Then, if the stationary
probability of being in region i exists for all i and
is given by pi, an upper bound of r is

ru = s
n

i=1

s
S

s=1

pipsln(Mi(Es)). (6)

The lower bound is calculated similarly. These
upper and lower bounds on r exist provided that
upper and lower bounds on the log growth rate
exist for all i and s. (If the environments are not
i.i.d., these bounds can be computed by replacing
pips with a joint probability pi,s.)

As the number of regions n is increased, in
such a way that the maximum distance across
each region approaches zero, the upper and
lower bounds converge to a common value,
provided, for example, that r(p,q,r), the
expected log growth rate conditional on the allele
frequencies p, q and r, is continuously differen-
tiable. That is, taking m(p,q,r,Es) to be the
expected growth rate of the population in
environment Es, conditional on allele frequencies
p,q, and r, the upper and lower bounds will
converge if the first partial derivatives of
m(p,q,r,Es) with respect to p,q, and r are all finite
everywhere in allele frequency space. This result
follows from an application of the Mean Value
Theorem.

3. Sex vs. Selfing

We have shown above that the distribution of
genotype frequencies in a population can affect
the level of aggregate uncertainty, and hence
long-term population growth and survival. It is
well known that mating patterns in a population
lead to different distributions of genotype
frequencies: for instance selfing or positive
assortative mating generally lead to heterozygote
deficiencies, while self-incompatibility systems
may result in excess heterozygotes. It is likely
that each of these departures from a model of
random-mating will impact levels of aggregate
uncertainty, though the direction of the effect
may in some cases be model-dependent.

In this section, we argue that the different
distributions of genotype frequencies due to sex
or selfing affect the level of aggregate risk
encountered by a population. Thus, the differing
consequences of aggregate uncertainty and
idiosyncratic risk may be important in the
maintenance of sexual reproduction. A wide
range of explanations have been proposed for
this evolutionary puzzle, including those involv-
ing the rate of evolution (Fisher, 1930; Muller,
1932), adaptation to uncertain or changing
conditions (Haldane, 1932; Williams, 1975;
Charlesworth, 1976), DNA repair (Bernstein &
Bernstein, 1991; Avise, 1993), avoidance of
genetic deterioration (Muller, 1964; Felsenstein,
1974; Kondrashov, 1988), genetic segregation
(Kirkpatrick & Jenkins, 1989, but see also
Wiener et al., 1992) and parasite resistance
(Hamilton, 1980; Hamilton et al., 1990). A
closely related problem, the evolution of
recombination rates, has been studied in detail
using modifier theory (e.g. Bergman & Feldman,
1990, 1992; Feldman et al., 1996). A recent
review of the evolution of sex problem is
provided by Hurst & Peck (1996); see also the
volume by Michod & Levin (1988).

Within the evolution of sex literature, the
models most closely related to the present paper
concern the effects of environmental uncertainty
on population growth under sexual and asexual
reproduction—namely, Moore & Hines (1981),
Hines & Moore (1981), Weinshall (1986), Eshel
& Weinshall (1987), Weinshall & Eshel (1987)
and Roughgarden (1991). In what follows, we
will turn our attention to those models, arguing
that their effects are most clearly understood in
the framework of idiosyncratic and aggregate
risk that we have developed above.

Notice that the models treated in this paper
assume that there is no random phenotypic
variation (or phenotypic plasticity.) When this
form of variation is present, it will have much the
same effect as outcrossing in reducing aggregate
uncertainty (Cooper & Kaplan, 1982; Seger &
Brockmann, 1987). Indeed, it is plausible that
asexual lineages would be under selective
pressure to increase the degree of random
phenotypic variation. While this strategy may be
viable for some sorts of traits, it will not be viable
for traits which are strongly genetically deter-
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mined—for example, immune system response to
pathogens, which in mammals is largely deter-
mined by MHC type. Of course, the difference
between sexual and asexual reproduction
emerges only for those phenotypes which are
genetically determined.

Our models also assume that there is a
negligible mutation rate. In principle, an
extraordinarily high mutation rate at certain
critical loci could also rescue asexual lineages by
regenerating new genotypes, much as outcross-
ing reintroduces different genotypes into sexual
lineages. However, typical mutation rates appear
too low to affect these conclusions. This is
unsurprising; given the typical complexity of
genetic traits, accelerated mutation is a strikingly
inefficient mechanism for producing a few target
genotypes.

As a first example of this principle, we return
to Weinshall’s model (see Table 1). Recall that
for suitable values of the fitnesses x and y, a
random-mating sexual population is able to
survive indefinitely under this model. However,
as Weinshall points out, an asexual population,
though it might enjoy a two-fold expected fitness
advantage, is doomed to rapid extinction.

Sexuals and asexuals differ here in that each
asexual genotype can be considered to be a
distinct lineage. In our density-independent
formulation, each lineage survives or perishes
independently of all other lineages. Each lineage
has zero fitness in at least one environment, and
since there is probability 1 that every environ-
ment will occur within a sufficiently long time
period, no lineage will survive indefinitely.

Notice that in the asexual case, genetic
variation in the population plays no role in the
reduction of aggregate uncertainty. Each lineage
within the asexual population is genetically
uniform, and suffers the full consequences of
aggregate uncertainty. If, as in Weinshall’s
model, each lineage is separately doomed to
extinction, the population itself is doomed. This
argument does not hold in an outcrossing
population, because such a population does not
consist of genetically distinct lineages. Instead
the genotypes which do poorly in one generation
will be reconstituted by outcrossing (and, in
multi-locus models, recombination) among the
genotypes that have done well.

Though our analysis compares the growth
rates of sexual and asexual types, the effect
observed is not driven by group selection.
Instead, it can be viewed as a model of how
individual-level selection operates at a locus
modifying outcrossing behavior. (For example,
we might suppose that asexuality is due to
a dominant allele.) Because of the mating
behavior induced by this modifier, there is no
gene flow between sexuals and asexuals, and
hence we can take the shortcut of treating sexuals
and asexuals as separate populations in order
to compute the selective coefficients on the
modifier locus.

While we have concentrated on two extreme
cases—obligate sexuals and asexuals—in some
cases neither of these may be the optimal
strategy. Weinshall & Eshel (1987) discuss the
case in which individuals reproduce sexually at a
rate between 0 and 1.

For a second example of aggregate uncertainty
in sexual and asexual populations, we turn to a
model proposed by Roughgarden (1991); here
we describe the version of the model used for
Fig. 2 of that study.

Consider a population of diploid organisms,
subject to a randomly chosen environment in
each generation. There is one selected locus with
two alleles: denoted here as A and B. In each
generation, the fitness of each genotype is either
s or 1/s, each with probability 1/2, where sq 1
is a fixed parameter. The fitness of each of the
three genotypes is chosen independently of the
others, in each generation. This means that there
are eight equally probable environments (i.e. two
possible fitnesses for each of the three geno-
types). There is no serial correlation in the
environment from one generation to the next.

In addition to selection, the model allows
genotype frequencies to change through low
levels of mutation, thereby preventing the
populations from becoming monomorphic.
Roughgarden uses this model to compare the
performances of sexuals and asexuals. In each
generation, after selection, the genotype frequen-
cies of the sexual population return to Hardy–
Weinberg proportions through outcrossing,
while the genotype frequencies of the asexuals
are left unchanged. In simulations, Roughgarden
observed that sexuals consistently outperformed
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asexuals, with the magnitude of the advantage
increasing with s.

Let the frequencies of the three genotypes AA,
AB and BB be denoted by x1, x2 and x3,
respectively, where x1 + x2 + x3 =1. We will
now compute the expected log growth rate of the
population, conditioned on the genotype fre-
quencies, r(x1,x2,x3). This will give us a way of
understanding how aggregate uncertainty varies
across the simplex. (The idea is similar to that for
the criterion r(p,q,r) introduced at the end of the
previous section.)

r(x1,x2,x3)= 1/8 ( log(sx1 + sx2 + sx3)

+ log(sx1 + sx2 +1/s x3)

+ log(sx1 +1/s x2 + sx3)

+ log(1/s x1 + sx2 + sx3)

+ log(sx1 +1/sx2 +1/s x3)

+ log(1/s x1 + sx2 +1/s x3)

+ log(1/s x1 +1/s x2 + sx3)

+ log(1/s x1 +1/s x2 +1/s x3)). (7)

Again, r(x1,x2,x3) reflects the degree of aggregate
risk faced by the population at different points in
genotype frequency space. When there is a
stationary distribution over genotype frequencies
and r(x1,x2,x3) is continuously differentiable,
then the long-run average growth rate is given by
the integral of r(x1,x2,x3) with respect to the
stationary distribution on the simplex. In
Roughgarden’s model, r(x1,x2,x3) is continu-
ously differentiable. Assuming only that there
exists a stationary distribution over the regions
in any finite partition of the simplex, as in the
previous subsection, we can use r(x1,x2,x3) to
describe the behavior of this system.

In Fig. 3 we show a contour plot of r(x1,x2,x3)
on a De Finetti representation of the genotype
space. As in the Weinshall model, the value of
r(x1,x2,x3) depends on the location in genotype
space; moreover, the highest value again occurs
when the genotype frequencies are equal, at (1/3,
1/3, 1/3). At this point, aggregate uncertainty for
the population is minimized. Moving away from
the center of the simplex, r(x1,x2,x3) becomes
steadily smaller.

As Roughgarden points out, the genotype
frequencies of asexuals wander around the
simplex freely, while the genotype frequencies of

F. 3. Contour plot of r(x1,x2,x3) values on the simplex
of genotype frequencies in Roughgarden’s model. Lighter
regions have higher r(x1,x2,x3) values. The Hardy–Wein-
berg curve is overlaid on the simplex.

the sexuals revert in each generation to the
Hardy–Weinberg curve. Geometrically, return to
Hardy–Weinberg proportions corresponds to
strictly vertical movement on the simplex, as
allele frequencies are unchanged.

From Fig. 3, it is clear that when at the top
(AB) corner of the simplex, the sexual popu-
lation can derive a substantial increase in its
value of r(x1,x2,x3), by moving vertically
downward to this curve. By contrast, when away
from this top corner, vertical movement causes
little change in the value of r(x1,x2,x3), as
evidenced by the near-vertical contour lines in
these regions. There, movement to the Hardy–
Weinberg curve has little effect.

In this model, the highest r(x1,x2,x3) values are
achieved not on the Hardy–Weinberg curve but
rather below it [i.e. at (1/3, 1/3, 1/3)]. Thus,
aggregate uncertainty is greater on the Hardy–
Weinberg curve than slightly below it, where
there is a heterozygote deficiency. This means
that in Roughgarden’s model, partial assortative
mating, which generates excess homozygotes,
would outperform random mating.

Hines & Moore (1981) present a third model,
closely related to those discussed above, which
again shows that under some conditions there
can be an advantage to outcrossing in the face of
environmental fluctuations. The model is quite
similar to Roughgarden’s in that it deals with a
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one-locus, two-allele model of selection in a
fluctuating environment. (Hines & Moore also
describe a multi-locus model which is not
discussed here.) As in Roughgarden’s model, the
fitness of each genotype in each generation is
independent of the fitnesses of the other
genotypes. The difference arises from the rule
used to select the fitnesses in each generation.
Hines & Moore set the heterozygote fitness to 1,
and then draw the fitnesses of each of the two
homozygote types independently, from normal
distributions with arbitrary means and variances.
As in Roughgarden (1991) and Weinshall (1986),
fitnesses in a given year are independent of
fitnesses in the previous years.

In exploring this model, the authors examine
the change in the log ratio of sexual population
size to asexual population size, conditional on
the current allele frequencies in sexuals [see their
eqn (2).] This corresponds to the difference in
expected log growth rates of sexuals and asexuals
conditional on allele frequencies. The expression
that they derive for the growth of the sexuals [in
their eqns (3) and (4)] is closely analogous to the
measure r(p,q,r) used in this paper for the
long-term log growth rates of such populations.
Moreover, since a stationary distribution exists
for the allele frequencies in their model (Hines &
Moore, 1981), the arguments above can be
extended to formally justify their use of this
measure.

As in the models discussed above, the Hines
and Moore model reveals an advantage to sexual
reproduction when fitnesses fluctuate. Once
again, the benefit arises from the fact that
outcrossing converts some of the aggregate risk
faced by a population to idiosyncratic uncer-
tainty, thus increasing the average long-term
growth rate of the population.

4. Conclusions

Population growth is sensitive not only to the
magnitude of uncertainty in reproductive rate
but also to the correlations in reproductive rate
among individuals within the population.
Specifically, uncertainty does less to reduce
growth rates when each individual experiences
reproductive success as an independent draw,
than when the reproductive successes of individ-

uals are correlated. We have labelled these types
of risk as idiosyncratic and aggregate risk,
respectively. We demonstrate that a population
will grow faster if aggregate risk can be
converted to idiosyncratic risk with a similar
distribution, and that the presence of genetic
variation can do this.

One way in which this conversion may occur
is through outcrossing, and the distinction
between idiosyncratic and aggregate risk appears
to provide a clue to understanding the mainten-
ance of sexual reproduction. Outcrossing serves
to redistribute alleles within the population. As
a consequence, the offspring of a given individual
may be less correlated in phenotype, and
consequently less correlated in reproductive
fitness, than would be the case in an asexual
population. As demonstrated in Section 2, this
process provides the driving advantage to sexual
reproduction in several models of outcrossing in
variable environments including those presented
by Weinshall (1986), Roughgarden (1991), and
Hines & Moore (1981). However, it is important
to notice that our results are concerned with the
evolutionary maintenance of sexual reproduc-
tion, and do not deal directly with its origins.

The ideas for this paper were conceived in a series
of discussions at the Dynamic Evolutionary Game
Theory Conference in Waterloo, Ontario, August
1995. The authors would like to thank I. Eshel, M.
Feldman, M. Lachmann, S. Orzack, and S. Tul-
japurkar for extensive comments and suggestions. A.
Robson thanks the Social Sciences and Humanities
Research Council of Canada for research support. C.
Bergstrom and J. Pritchard were Howard Hughes
Predoctoral Fellows, and were also supported by NIH
grant GM 28016 to M. Feldman.

REFERENCES

A, K. B. & N, P. E. (1972). Branching Processes.
Berlin: Springer-Verlag.

A, J. C. (1993). The evolutionary biology of aging,
sexual reproduction, and DNA repair. Evolution 47(5),
1293–1301.

B, A. & F, M. W. (1990). More on selection
for and against recombination. Theor. Popul. Biol. 38,
68–92.

B, A. & F, M. W. (1992). Recombination
dynamics and the fitness landscape. Physica D 56, 57–67.

B, C. & B, H. (1991). Aging, Sex, and
DNA Repair. New York: Academic Press.



    553

C, B. (1976). Recombination modification in
a fluctuating environment. Genetics 83, 181–195.

C, D. (1993). Fitness in random environments. In:
Adaptation in Stochastic Environments (Yoshimura, J. &
Clark, C. W., eds) Vol. 98 of Lecture Notes in
Biomathematics, pp. 8–25. New York: Springer-Verlag.

C,W. S.&K, R.H. (1982). Adaptive ‘‘coin-flip-
ping’’; a decision-theoretic examination of natural
selection for random individual variation. J. theor. Biol.
94(94), 135–151.

D (1955). Maintenance of genetic heterogeneity.
Cold Spring Harbor Symp. Quant. Biol. 20, 25–32.

E, I. & W, D. (1987). Sexual reproduction and
the viability of future offspring. Am. Nat. 130(5),
775–787.

F, M. W., O, S. P. & C, F. B. (1996).
Population genetic perspectives on the evolution of
recombination.

F, J. (1974). The evolutionary advantages of
recombination. Genetics 78, 737–756.

F, R. A. (1930). The Genetical Theory of Natural
Selection. Oxford: Oxford University Press.

G, J. (1973). Polymorphism in random environ-
ments. Theor. Popul. Biol. 4, 193–195.

G, J. H. (1991). The Causes of Molecular Evolution.
Oxford Series in Ecology and Evolution. New York:
Oxford University Press.

H, P. & I, Y. (1995). Optimal mixed strategies in
stochastic environments. Theor. Popul. Biol. 47(2),
212–243.

H, J. B. S. (1932). The Causes of Evolution. New
York: Harper.

H, J. B. S. & J, S. D. (1963). Polymorphism
due to selection of varying direction. J. Genetics 58,
237–242.

H, W. D. (1980). Sex verson non-sex versus
parasite. Oikos 35(2), 282–290.

H, W. D., A, R. & T, R. (1990). Sexual
reproduction as an adaptation to resist parasites. Proc.
Nat. Acad. Sci. 87, 3566–3573.

H, W. G. S. & M, W. S. (1981). An analysis of sex
in random environments. Adv. Appl. Prob. 13, 453–463.

H, L. D. & P, J. R. (1996). Recent advances in
understanding of the evolution and maintenance of sex.
Trends Ecol. Evol. 11(2), 46–52.

K, J. F. C. (1973). Subadditive ergodic theory. Ann.
Prob. 1, 883–909.

K, M. & J, C. D. (1989). Genetic
segregation and the maintenance of sexual reproduction.
Nature 339, 300–301.

K, A. S. (1988). Deleterious mutations and the
evolution of sexual reproduction. Nature 336, 435–440.

K, D. M. (1990). A Course in Microeconomic Theory.
Princeton: Princeton University Press.

L, R. C. & C, D. (1969). On population
growth in a randomly varying environment. Proc. Nat.
Acad. Sci. 62, 1056–1060.

M, B.B. (1982). The Fractal Geometry of Nature.
San Francisco: W. H. Freeman.

M, R. E. & L, B. R. (1988). The Evolution of Sex.
Sunderland, MA: Sinauer Associates.

M, W. S. & H, W. G. S. (1981). Sex in random
environments. J. theor. Biol. 92, 301–316.

M,H. J. (1932). Some genetic aspects of sex. Am. Nat.
66, 118–138.

M, H. J. (1964). The relation of recombination to
mutational advance. Mutat. Res. 1, 2–9.

R, A. J. (1996). A biological basis for expected and
non-expected utility. J. Econ. Theory 68, 397–424.

R, J. (1991). The evolution of sex. Am. Nat.
138(4), 934–953.

S, A. & E, S. (1995). The evolutionarily stable
phenotype distribution in a random environment.
Evolution 49(2), 337–350.

S & B (1987). What is bet-hedging? Oxford
Surveys Evol. Biol. 4, 182–211.

T, S. D. & O, S. H. (1980). Population
dynamics in variable environments I. Long-run growth
rates and extinction. Theor. Popul. Biol. 18, 314–342.

W, D. (1986). Why is a two-environment system
not rich enough to explain the evolution of sex? Am. Nat.
128(5), 736–750.

W, D. & E, I. (1987). On the evolution of an
optimal rate of sexual reproduction. Am. Nat. 130(5),
758–774.

W, P., F, M. W. & O, S. P. (1992). On
genetic segregation and the evolution of sex. Evolution
46(3), 775–782.

W, G. C. (1975). Sex and Evolution, Vol. 8 of
Monographs in Population Biology. Princeton: Princeton
University Press.

Y, J. & C, C. W. (1991). Individual adap-
tations in stochastic environments. Evol. Ecol. 5,
173–192.

APPENDIX A

The Allele Frequency Distribution in a
Special Case of the Weinshall Model

Here we analyse the evolution of allele
frequencies in Weinshall’s model for the special
case x=2y. Recall from Section 2 that if allele
frequencies start at an arbitrary point in the
simplex, they will move to one of three possible
points in the next generation. These points are
halfway between the initial point and the
particular vertex which is determined by the
environment.

We begin by constructing a characterization of
the allele frequency space in the interval [0,1] (M.
Lachmann, 1996, personal communication). We
represent the interval [0,1] in base 4. (We must
formally distinguish between 0.033333. . . and
0.100000, for example.) First divide the simplex
into four subtriangles, as in Fig. A1, yielding the
label x1 for a given point x. Next divide each of
the subtriangles into four smaller subtriangles,
again labelling the center with 0, the top with 1,
the left with 2, and the right with 3, thus yielding
the next label x2. (The subtriangles of the
upside-down center subtriangle can be labelled
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arbitrarily.) Continue in this fashion dividing the
simplex into further subtriangles, thereby ulti-
mately characterizing each point x in the simplex
by a number in base 4, x=0.x1x2x3 . . ..

If we start at a point x=0.x1x2x3 . . ., then
moving halfway toward the vertex x0 =1, 2, or
3, each with probability 1/3, yields the point
y=0.x0x1x2x3 . . .. If we start at a point p0 on the
simplex, after n moves (labelled x1, x2, . . ., xn) we
obtain the point p'=0.xnxn−1. . .x1p0. Notice
that xkxk−1. . .x1 specifies one of the 3k shaded
subtriangles of the Sierpinski triangle. Since it is
equally likely that each xi =1, 2, or 3, after at
least k moves there is probability 3− k of being in
each of the 3k shaded subtriangles. Moreover, the
probability distribution is clearly uniform over
these shaded subtriangles.

APPENDIX B

Long-term Population Growth in the
Weinshall Model

In this appendix we extend the analysis of
Weinshall (1986) to the case of hard selection, in
order to demonstrate that under that model, for
suitably large fitnesses x and y, a sexual
population can survive indefinitely, even though
all asexual types are doomed to rapid extinction.
The importance of this result, in the context of
this paper, is that it shows that enough genetic
variation is maintained over time to keep
aggregate uncertainty at manageable levels. We
define genotypes, environments, and fitnesses as
in Section 2.

Define at, bt and ct to be the numbers of each
allele at times t=0, 1, . . . and a�t = at/
(at + bt + ct), b�t/(at + bt + ct) and c�t = ct/

(at + bt + ct) to be the corresponding
frequencies. Define matrices mI, mII, and mIII as
follows:

mI = 2x00 y
y
0

y
0
y3

mII = 2yy0 0
x
0

0
y
y3 (B.1)

mIII = 2y0y 0
y
y

0
0
x3

Taking the allele vector at time t as (at,bt,ct)'= zt,
where z0 is given, repeated application of the
recursion equations (4) implies that for T=1, 2,
. . . the following expression holds:

zT = t
t$T(I)

a�t t
t$T(II)

b�t t
t$T(III)

c�t (m̃T−1 . . . m̃0z0) (B.2)

Here m̃t is a randomly chosen matrix, equal to mi

if and only if the environment at date t is i= I,
II, or III, and T(i) is the subset of 40, . . ., T−15
for which the environment is i= I, II, III, where
the norm >·> denotes the sum of the entries of
a vector or matrix with all non-negative entries.
Then the total number of alleles at date T is

>zT>= aT + bT + cT

= t
t$T(I)

a�t t
t$T(II)

b�t t
t$T(III)

c�t>m̃T−1 . . . m̃0z0> (B.3)

The subadditive ergodic theorem applied to
random matrices with non-negative elements
(see Kingman, 1973) implies that,

lim
T : a

1
T

ln>m̃T−1 . . . m̃0z0>

= lim
T : a

1
T

ln> ˜ T−1 . . . m̃0>= r1 Qa (B.4)

say, as T : a, independently of z0 =
(a0,b0,c0)�(0,0,0). That is, this limit exists and is
also independent of the sequence of environ-
ments, with probability 1. Note that all matrices
here have finite elements. Consider this theoremF. A1. Labelling the subtriangles of the simplex.
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applied to the case where the matrices mI, mII and
mIII are replaced by

m̃1 = 2x00 0
y
0

0
0
y3

m̃2 = 2y00 0
x
0

0
0
y3 (B.5)

m̃3 = 2y00 0
y
0

0
0
x3

respectively. It follows that

r1 e (1/3) ln x+(2/3) ln yq−a, (B.6)

so that r1 can be chosen as large as desired by
choosing x and y large enough. The growth of
the total number of allele copies, as reflected in
the behavior of the expression 1/T ln >zT> as
T : a, then depends on the behavior of

1
T

ln 0t
t$T(I)

a�t t
t$T(II)

b�t t
t$T(III)

c�t1, (B.7)

asT : a. Of course, the above term is no less
than

1
T

ln 0t
T−1

t=0

a�t1+
1
T

ln 0t
T−1

t=0

b�t1+
1
T

ln 0t
T−1

t=0

c�t1.
(B.8)

Consider then the behavior of

1
T

ln 0t
T−1

t=0

a�t1=
1
T

s
T−1

t=0

ln a�t, (B.9)

as T : a, since the behavior of the other two
terms must be similar. Introducing appropriate
time superscripts to eqns (4), it follows that, if
the environment at time t is I,

a�t−1 = a�t+1
I =

a�tx+ b�ty+ c�ty
a�tx+2b�ty+2c�ty

r 1/2, (B.10)

regardless of x, yq 0.

(i) Consider first the case that 2ye x. If the
environment at time t is II or III, then

a�t+1 = a�t+1
II =

a�ty
2a�ty+ b�tx+2c�ty

r a�t/2 or (B.11)

a�t+1 = a�t+1
III =

a�ty
2a�ty+2b�tx+ c�ty

r a�t/2. (B.12)

It can be shown to follow that

1
T

s
T−1

t=0

ln a�t r t̃+1
T

ln 2a�0 −
1
T

s
T−1

t=0

ẽt ln 2, (B.13)

where t̃ is a random variable representing the
time of the first appearance of environment I. (It
is enough to consider only the case that
Te t̃+1, since the limit as T : a will be taken
and t̃ is finite with probability one.) In addition,
ẽt is the associated random variable defined by

e0 =1, ẽt+1 =6et +1,
1

with probability 2/3
with probability 1/37,

independently at t=0, 1, . . . . (B.14)

It is not hard to show that, with probability 1,

t̃+1
T

: 0

and

1
T

t
T−1

t=0

ẽt : (1/6)E((t̃+1)(t̃+2)), (B.15)

as T : a. Now

E(t̃+1)(t̃+2))= (1/3)2+ . . .+

(2/3)k(1/3)(k+1)(k+2)+ . . .0LQa, (B16)

by the ratio test. Where lim denotes the limit
inferior of a sequence, it follows that

limT : a
1
T

s
T−1

t=0

ln a�t r−(L/6) ln 2q−a, (B.17)

with probability 1, so

limT : a
1
T

ln 0t
t$T(I)

a�t t
t$T(II)

b�t t
t$T(III)

c�t1
r−(L/2) ln 2q−a, (B.18)
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with probability 1. Finally then, recalling eqns
(B.3) and (B.6),

limT : a
1
T

ln>zT>r (1/3) ln x

+(2/3) ln y−(L/2) ln 2, (B.19)

with probability 1. It follows that the sexual
population is essentially bounded below by a
population growing at a rate which can be made
as large as desired by choosing large enough x
and y. In particular, then, the sexual population
is not condemned to asymptotic decline.

(ii) Consider now the case that xe 2y. If the
environment at time t is II or III,

a�t+1 = a�t+1
II =

a�ty
2a�ty+ b�tx+2c�ty

r a�ty/x (B.20)

or

a�t+1 = a�t+1
III =

a�ty
2a�ty+2b�tx+ c�ty

r a�ty/x. (B.21)

It follows readily that

1
T

s
T−1

t=0

ln a�t r t̃+1
T

ln
a�x
y

−
1
T

s
T−1

t=0

ẽt ln (x/y),

(B.22)

where t̃ and ẽt are as defined above for t̃+1ET.
Making additional minor changes in the
previous argument, it follows that

limt : a
1
T

ln>zT>r (1/3) ln x

+(2/3) ln y−(L/2) ln (x/y), (B.23)

with probability 1, so it is still true that the sexual
population is essentially bounded below by a
population growing at an exponential rate which
can be made as large as desired by choosing
suitable large x and y. Again, the sexual
population is not bound to decline to 0, in
particular. Therefore, it is clear that a sexual
population can outcompete an asexual popu-
lation, despite a two-fold cost of sex, simply
because the asexual population is bound to go
extinct while the sexual population will persist.
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