
Journal of Bioeconomics 1: 47–72, 1999
c© 1999 Kluwer Academic Publishers. Manufactured in The Netherlands.

Does mother nature punish rotten kids?

Carl T. Bergstroma & Theodore C. Bergstromb
aDepartment of Biology, Emory University, 150 Clifton Rd., Atlanta, GA 30322 USA (cbergst@emory.edu)
bDepartment of Economics, University of California at Santa Barbara, Santa Barbara, CA 93106, USA
(tedb@econ.ucsb.edu)

Synopsis: The theory of parent-offspring conflict predicts that mothers and their offspring may not agree about
how resources should be allocated among family members. An offspring, for example, may favor a later weaning
date than does its mother. Despite a parent’s physical superiority, it may be that offspring are able to manipulate
their parents’ behavior. In this paper, we investigate a two-locus population genetic model of weaning conflict in
which offspring can attempt to extort resources from their parents by reducing their own chances of survival if
their demands are not met. We find that the frequency of recombination between the genes controlling maternal
behavior and those controlling juvenile behavior determines the evolutionary outcome of this genetic conflict.
When these genes are tightly linked, the mother will be able to get her way. When they are not, offspring can
successfully ‘blackmail’ their parents into providing additional resources.
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1. Parent-offspring conflict in economics and biology

1.1. Economic theories of the family

The demand for children and for children’s consumption goods have been central themes
in the economics of the family.1 Most economic studies of these topics are based on theory
that would apply equally well to the demand for pets and the derived demand for pet food.
Children are assumed to have no decision-making authority and hence their preferences are
assumed to have no bearing on economic outcomes.

Becker (1974) introduced an economic model of the household in which children are
rational decision-making agents with interests distinct from those of their parents. Becker’s
model allows children to have economic spheres of influence where they can make decisions
that influence their own well-being. Becker found a surprising result—which he called the
‘rotten-kid theorem.’ The rotten-kid theorem assumes that offspring care only about the
money value of their consumption and that there is a benevolent ‘household head’ who is
so much wealthier than his children that he chooses to make gifts to each of them. Thus all
“marginal” allocational decisions are made by the household head. Although children are
entirely selfish and are able to influence the pre-transfer income distribution in the family,
it will be in the interest of each to try to maximize total household income. The outcome
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is the same as the allocation that would have been selected by a benevolently dictatorial
household head. According to Becker (1974, pp. 1077–1078):. . . the headautomatically
internalizes the “external” effects of his actions on other family members. Indeed, because
the head maximizes family income, hefully internalizes these externalities not only when
the income of different members but also when their consumption. . . is directly affected.”

Economists (e.g., Bergstrom 1989, Bruce & Waldman 1990, Lindbeck & Weibull 1988)
have since demonstrated that the conclusions of the rotten-kid theorem depend critically on
special assumptions that are likely to be violated in normal interactions among offspring and
parents. In realistic environments, a child who is able to make the ‘first move’ in interactions
with a parent may be able to manipulate the parent to contribute more resources to the child
than the parent would if the parent could control the child’s actions.

1.2. Biological theories of parent-offspring relations

Biologists, like economists, have found the language of game theory a useful way to study
conflict and cooperation between parents and offspring. Evolutionary biologists bring two
ideas to the study of the family that are new to economists. First, payoffs in games between
family members are usually measured in the currency of reproductive success. Second, in
biological models, the strategy that an individual uses in games with its relatives is pro-
grammed by its genes, which are passed from parent to offspring by the rules of Mendelian
inheritance.

Almost all modern work on familial interaction (surveyed by Clutton-Brock (1991),
Godfray (1995), and by Mock & Parker (1997)), has been influenced profoundly by the
fundamental contribution of Hamilton (1964) to the theory ofkin selection. Hamilton
demonstrated that evolution will favor siblings who are neither totally altruistic nor totally
selfish toward each other. Hamilton stated the following proposition, which has come to be
known as ‘Hamilton’s Rule’: ‘The social behavior of a species evolves in such a way that
in each distinct behavior-evoking situation the individual will seem to value his neighbors’
fitness against his own according to the coefficients of relationship2 appropriate to that
situation’ (Hamilton, 1964, p. 19).

Trivers (1974) explicitly applied Hamilton’s theory of kin selection to parent-offspring
conflict. Trivers pointed out that Hamilton’s rule predicts that offspring will be more selfish
in their dealings with their siblings than their parents would like them to be. For example,
since the coefficient of relationship between full siblings is 1/2, a child will value its sibling’s
fitness at 1/2 of its own. In contrast, Hamilton’s rule predicts that parents will value the
fitness of all of their offspring equally. Trivers argues that there is abundant evidence in
nature of parent-offspring conflict which reflects the lack of coincidence of the genetic
interests of children and their parents.3

Trivers’ view that children often find ways to advance their own genetic interests at the
expense of those of their parents was not universally shared by evolutionary biologists. In
the same year that Becker introduced the rotten kid theorem, a biologist, Alexander (1974),
offered a theory of parent-offspring relations that is more in accord with Becker’s ideas.
Alexander proposed that evolutionary theory would lead us to expect parents to be able to
manipulate their offspring to act in the parental genetic interest.
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Alexander supported his view with two arguments; the first of which does not seem to
have occurred to economists. Alexander reasoned that a gene that leads a child to act against
reproductive interests of its parents will not spread because when a child with such a gene
grows up, its own children will act against its reproductive interests, and hence in the long
run such a ‘rotten kid’ will generate fewer descendants.

Dawkins (1976, 1982) disputed Alexander’s genetic argument for the primacy of parental
interests. Dawkins agreed that Alexander was correct in pointing out that one of the costs
of being a selfish child was ‘the disadvantage of one’s selfishness spreading to one’s own
children’ but argued that this cost is not decisive in the conflict between the reproductive
interests of parent and child. Appealing to Hamilton’s theory of kin-selection, Dawkins
(1976, pp. 137–138) asserts that for sexual diploids, ‘a selfish child will still do well to
be selfish so long as the net benefit to him is at least half of the cost to close relatives.’
Alexander (1979) later agreed to the view expressed by Dawkins and recanted his ge-
netic explanation for parental dominance. But Alexander had in store a second argument
for the dominance of parental interests. This argument is more direct and is similar to
that made by Becker in the rotten kid theorem. Becker appeals to the economic domi-
nance of the household head, arguing that the head controls the relevant household bud-
get decisions because his wealth is much greater than that of the other family members.
Alexander (1974, p. 340) relies on the physical primacy of the parent, asserting that ‘. . . the
parent is bigger and stronger than the offspring, hence in a better position to pose its
will.’

The Becker-Alexander appeal to physical superiority and the parental ability to allocate
resources has also come under attack by biologists. Dawkins (1976) suggested that offspring
may have private information about their own condition which parents can only guess. This
puts offspring in a strong position to manipulate their parents by lying about their own
condition. Zahavi (1975, 1977) proposed that, by screaming until it is fed, a child might
blackmail its parents into giving it more food than the parents would prefer to contribute.
Since the screaming is likely to attract predators, the parent must feed it or expect to lose the
child. Both of these forms of manipulation of parents by offspring have received attention
in the biological literature.

Feldman & Eshel (1982) constructed a model of family behavior that is strikingly similar
to Becker’s scenario. Feldman and Eshel endowed parents with the power to redistribute
wealth away from greedy children, where behavior of parents and of offspring is geneti-
cally coded. They found that parental ability to redistribute is not necessarily sufficient to
induce offspring to behave as their parents would choose. In a later paper, Eshel & Feldman
(1991) present a detailed genetic model that incorporates Zahavi’s idea that offspring might
blackmail their parents by threatening to bring harm to themselves. They study a two-locus
genetic model of interaction between parents and offspring in which individual offspring
can advance their own reproductive interests by imposing ‘handicaps’ on themselves; these
handicaps increase the amount of resources needed to reach a given probability of survival.
Eshel and Feldman find that under some conditions, this strategy of blackmail can indeed
invade and resist invasion by non-blackmailing offspring. Thus, they show that the fact
that parents control resource allocation at the margin does not necessarily allow parents to
enforce their will.
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1.3. The scope of this paper

In the sections that follow, we address the question posed in this paper’s title. That is, we
ask whether evolutionary forces tend to support the Becker-Alexander position, that parent-
offspring conflict will be resolved in favor of the parents’ reproductive interests, or the
Trivers-Dawkins position, that an individual offspring can manipulate its parents to further
its reproductive success at the expense of the parents’ own reproductive success. In doing
so, we address not only the extent of the genetic conflict between parents and offspring
(thebattleground, in Godfray’s (1995) terms), but also theresolutionof this conflict. This
paper is intended to be readily accessible to economists who have little or no background
in evolutionary biology. Therefore, we begin with a brief discussion on two-locus genetics.
We then launch our attack on the problem of parent-offspring conflict by studying one of
the simplest possible non-trivial examples—a model of weaning conflict between a mother
and her first-born, in which resources can either be given to the first-born or reserved for a
child who is not yet born.4 Because of its stark simplicity, this example is well-suited for
illustrating fundamental principles of parent-offspring conflict that can be obscured in more
complicated interactions among parents and their offspring.

In Section 3 we describe the model formally. We determine the weaning age that will
be fixed by natural selection if first-born lambs control the weaning age unchallenged by
their mothers, and the weaning age that will be fixed if mother have unchallenged control.
In Section 4 we consider a set of strategies in which mothers ‘offer’ a certain weaning
age, and offspring can either comply or take drastic and costly action to express their
dissatisfaction, bleating until they attract predators. Working within an explicit two-locus
genetic framework, we consider the effects of these strategies on the survival probabilities of
first-born and second-born offspring. We examine how the genetic conflict between parent
and offspring will be resolved in such a system, and explore the characteristics of stable
equilibrium.

Our work on this problem has been inspired by the two-locus models of parent-offspring
conflict presented by Eshel & Feldman (1991) and many of our results closely parallel
findings in their paper. Eshel and Feldman address Zahavi’s concept of the non-signalling
‘handicap,’ examining the evolution of strategies in which offspring actually reduce their
own survival probability given any particular amount of resources. By contrast, we consider
the evolution of strategies in which offspring reduce their own survival probability (to zero,
in our model) if they do not get their way, but do not negatively affect their survival prob-
ability if they do get their way. Hence, at the equilibria which we consider, offspring will
enjoy the maximum possible survival probability given the amount of resources received.
This allows us to separate the persuasive potential of offspring ‘threats’ from the handicap
mechanism itself.

2. Elements of one-locus and two-locus genetics

In sexual diploid species—which include all birds and mammals—each individual has two
copies of each ‘gene.’ More precisely, each individual has two (possibly identical) alleles
at each genetic locus; one of these alleles is inherited from its mother and one from its
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father.5 The allele inherited from each parent is a random draw from the parent’s two alleles
at the same locus. In this paper we will study a two-locus genetic model in which the pair
of alleles that an individual carries at one genetic locus determines the strategy that it will
use as a child dealing with its parents, while the pair of alleles that it carries at a second
locus determines the strategy that it will use as a parent if it survives to adulthood and
reproduces.6

We introduce a number of definitions that will help us to discuss evolution in populations
of individuals with genetically encoded strategies.

Definition 1 (Homozygous and heterozygous individuals). An individual is said to be
homozygousat a given locus if its two allele copies at that locus are the same. An individual
is heterozygousat a given locus if its two allele copies at that locus are different.

Definition 2(Dominant and recessive alleles). An allele is said to be dominant if a het-
erozygote with one copy of this allele expresses the same phenotype, strategy, or behavior
as does a homozygote with two copies of the allele. An allele is said to be recessive if a
heterozygote with one copy of this allele expresses the same phenotype, strategy, or behav-
ior as does a homozygote with two copies of the other allele. That is, a dominant allele
has its full effect even if heterozygous, whereas a recessive individual has no effect unless
homozygous.

Definition 3(Monomorphic populations). A population is said to be monomorphic at a
genetic locus if all individuals in the population—excepting the occasional rare mutant—
have the same pair of identical alleles at this locus. A population is said to be monomorphic
if it is monomorphic at all loci considered. For example, in the present model, a population
will be considered monomorphic if both the locus controlling parental behavior and the
locus controlling offspring behavior are monomorphic.

Definition 4(Invasion by a dominant mutant allele). A dominant mutant allele is said to
invade a monomorphic population if it can increase in frequency when rare. More formally,
a novel allele can invade if, when an arbitrarily small positive proportion of this allele is
added to the original population, the average number of copies of each novel allele that are
passed on to surviving members of the adult population of the next generation exceeds the
average number of copies of each normal allele that are passed on to surviving members of
the adult population of the next generation.

Definition 5(Stable monomorphic equilibrium). A stable monomorphic equilibriumis a
monomorphic population that cannot be invaded by any possible rare dominant allele.7

To determine the equilibrium strategies at the loci encoding juvenile and parental behav-
ior, we will need to take into account the details of the transmission process for these alleles.
Suppose an individual receives allelesA1 andB1, encoding parental and juvenile behavior
respectively, from her mother, and allelesA2 andB2 from her father. What combinations
will she transmit to her offspring? She might transmit the allele combinations received from
a single parent (A1B1 or A2B2), or she might transmit a combination involving one allele
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from her mother and one from her father (A1B2 or A2B1). The probability that the com-
bination transmitted includes one allele from each of her parents depends on the physical
arrangement of theA andB alleles on the chromosomes.

Definition 6(Recombination fraction). The recombination fractionbetween two lociA
andB is defined as the probability that an individual receiving allelesA1B1 from one parent
andA2B2 from the other will transmit arecombinantallele combinationA1B2 or A2B1 to
any given offspring.

Definition 7(Linkage). If the alleles at two loci are transmitted only in the combinations
received from an individual’s parents, the loci are said toperfectly linked, with a recombi-
nation fractionr = 0. When alleles at theA andB loci assort independently—i.e., when
an individual is equally likely to transmit all possible combinationsA1B1, A1B2, A2B1, and
A2B2—the A andB loci are said to beunlinked, with a recombination fraction ofr = 1/2.
When the alleles are more likely to be transmitted in the combinations received from the
parents, but are not necessary transmitted only in those combinations, the loci are said to
bepartially linkedwith 0< r < 1/2.8

The coefficient of relationship between siblings.In general, natural selection will not
result in a population of individuals who simply maximize their own survival probability
without regard to the survival probabilities of their relatives. The key to understanding the
evolution of behavior in games between relatives is to notice the following: a rare allele
that affects the behavior of one individual is more likely to be found in close kin than it is
to be found in an average member of the population. In games played among siblings, or
between parents and offspring, the expected payoff to an individual with a rare allele will
be influenced not only by the way that this allele changes itsownbehavior, but also by the
probability that its relatives carry the same allele and behave accordingly.

Definition 8 (Coefficient of relationship). The coefficient of relationshipbetween two
relatives, which we will denote byk, is the probability that a rare allele carried by one of
them will also be carried by the other.9

It is instructive to work through a calculation of the coefficient of relationship between
two children born to the same mother. Assuming that this allele is not sex-linked and does
not have differential effects on survival of the two sexes, copies of the rare allele in the
population are equally likely to be present in males and females. When this allele is rare
and mating is random, carriers of the rare allele will almost always mate with an individual
who is homozygous for the normal allele. Since children receive one allele from each
parent, almost all carriers of the rare allele will be heterozygotes with one copy of the rare
allele and one copy of the normal allele; moreover, the rare allele is equally likely to be
inherited from the child’s father or its mother.

Consider a child who carries the rare allele. Suppose that this child inherited the rare
allele from its mother. Then, whether or not its maternal sibling shares the same father,
the sibling will almost certainly have a homozygous normal father and thus its paternally-
inherited allele will almost certainly be normal. The allele that the sibling inherits from its



DOES MOTHER NATURE PUNISH ROTTEN KIDS? 53

mother, however, is equally likely to be a copy of her rare allele or of her normal allele.
Therefore, if the child inherits the rare allele from its mother, the probability is 1/2 that its
maternal sibling also carries a copy of the rare allele. Now suppose that the child inherits
the rare allele from its father. If the child’s maternal sibling does not share the same
father, then since the allele is rare, the maternal sibling’s mother and the father will almost
certainly both be homozygous normal and in this case the sibling will certainly not have
the rare allele. If the child inherited the rare allele from its father, and its maternal sibling
also shares the same father, then with probability 1/2, the sibling will also inherit the rare
allele from their father. Therefore, ifs is the probability that two offspring of the same
mother also have the same father, and if a child has inherited the rare allele from its father,
then the probability that its maternal sibling also has the rare allele iss/2. Since a child
who carries the rare allele is equally likely to have inherited it from its father or from its
mother, it follows that for two offspring of the same mother, the coefficient of relationship
is k = 1/2(1/2+ s/2) = (1+ s)/4. If mating is perfectly monogamous, thens = 1 and
k = 1/2. If females never mate twice with the same individual, thens= 0 andk = 1/4.

2.1. A simplifying assumption about fertility

In the long run, the alleles that are found in the population will be those that mandate
strategies that lead to success in reproduction. In general, the long run reproductive success
of a gene may depend on more than the expected number of copies that it produces in the
next generation. For example, an individual may be able to produce a greater number of
surviving grandchildren by having fewer, but healthier and/or more cooperative children.
Similarly, in the case of primogeniture, a parent may maximize the number of descendants
by treating some offspring differently from others. In the models considered in this paper,
we will avoid these complications by assuming the following:

Assumption 1. The probability that an individual reaches adulthood depends only on
its own actions and the actions of its parents and siblings. All individuals who survive to
adulthood have the same expected number of offspring.

The reproduction rate of an allele can be measured as the expected number of copies of
each allele of its kind that are passed from a surviving adult in one generation to a surviving
adult in the next generation. Since we have assumed that all individuals that survive to
adulthood are equally fertile, the only variation in the reproduction rates of alleles comes
from variation in the probabilities that offspring who carry these alleles will survive to
adulthood. Assumption 1 allows us to determine the reproductive success of a rare allele
simply by comparing the average survival probabilities of offspring that carry the rare allele
with the average survival probabilities of homozygous normal offspring.

Remark 1. Given Assumption 1, a rare dominant allele can invade a monomorphic po-
pulation if and only if the average survival probability of offspring born with a single copy
of the rare allele exceeds the average survival probability of offspring born with two copies
of the normal allele.
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3. The case of the bleating lamb

Imagine a breed of sheep in which adult females have one lamb per year and survive as
adults for at most two years. A more realistic model of ovine reproduction would permit
ewes to have more than two fertile seasons, in which case the analysis here would apply to
the lambs born in the last two years of their mother’s life.10 These simple two-year sheep
will, however, be adequate for illustrating the ideas to be discussed here.

As the first-born lamb matures, it is able to forage for itself, but it still benefits from
feeding on its mother’s milk. The longer that it continues to nurse, the stronger it will
be when winter arrives and the more likely it will be to survive to adulthood. But a long
period of nursing is costly to the mother. The sooner the first-born lamb is weaned, the
healthier its mother will be when she gives birth to her second lamb, and the more likely the
second-born will survive. In evolutionary terms, this conflict of interest between mother
and lamb takes the form of a tradeoff between the survival probability of the first-born and
that of the second-born lamb.11

Let x denote the weaning age of the first-born lamb, where possible weaning ages range
from a minimum ofx to a maximum ofx̄. We assume that wherex is the weaning age of
the first-born lamb, the probabilities that the first-born and second-born lambs survive to
adulthood are both determined byx, where these probabilities are given by51(x) and
52(x), respectively. We make the following assumptions about the functions51(·) and
52(·).

Assumption 2. Wherex is the weaning age and51(x) and52(x) are the survival pro-
babilities of the first-born and second-born lambs:

(i) 5′1(x) > 0 and5′2(x) < 0 for all x ∈ [x, x̄].
(ii) 5′′1(x) < 0 and5′′2(x) < 0 for all x ∈ [x, x̄].

(iii) 5′1(x) > −5′2(x).
(iv) 52(x) < 51(x)+52(x) for all x ∈ [x, x̄].

Part (i) of Assumption 2 requires that survival probability of the first-born is an increasing
function of x while the survival probability of the second-born is a decreasing function
of x. Part (ii) assumes that asx increases, the first-born’s marginal gain from a longer
nursing period diminishes while the second-born’s marginal cost from delayed weaning
of the first-born increases. Part (iii) assumes that for a first-born who is weaned at the
earliest possible age,x, the marginal gain in survival probability from increasing the nursing
period exceeds the marginal cost of this extended weaning to its younger sibling. Part (iv)
assumes that the expected number of surviving offspring will be lower if the mother does
not nurse her first-born at all, letting it die, than if she nurses it for any positive length of
time.

It is instructive to look at a graph that traces out the possible combinations of survival
probability for the two offspring that can be attained by varying the weaning age of the
first-born. Asx is varied fromx to x̄, the survival probability of the first-born increases and
the survival probability of the second-born decreases continuously. If survival probability
of the first-born is measured on one axis and survival probability of the second-born is
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Figure 1. Survival probability frontier.

measured on the other access, the possible combinations of survival probabilities that can
be obtained by varyingx will trace out a continuous curve which we will call thesurvival
probability frontier.12

Definition 9(Survival probability frontier). Thesurvival probability frontieris the locus
of points(51(x),52(x)) wherex is betweenx andx̄.

The curveAB in figure 1 is an example of a survival probability frontier. Taking derivatives,
we find that the survival probability has the following properties.

Remark 2. The slope of the survival probability frontier at the point(51(x),52(x)) is
5′2(x)/5

′
1(x). Assumption 2 implies that5′2(x)/5

′
1(x) is a decreasing function ofx and

hence that the survival probability frontier bulges away from the origin, as in figure 1.

3.1. What would the first-born choose?

What age of weaning would we expect to find in a population where first-born lambs could
freely dictate the age at which they will stop nursing? We will assume that the age at which
a first-born lamb chooses to be weaned is controlled by a single genetic locus and that
natural selection operates on the alleles that determine the demands of first-born lambs.

Hamilton (1964) defined theinclusivefitness of an individual to be a weighted sum
of its own fitness and the fitnesses of its relatives, where the weights are the appropriate
coefficients of relatedness. Hamilton proposed that in stable monomorphic equilibrium
animals will act toward their relatives in such a way as so as to maximize their own inclusive
fitnesses. This proposition has come to be known as ‘Hamilton’s rule.’

Hamilton’s inclusive fitness as applied to first-born lambs in our weaning model is defined
as follows.
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Definition 10(Inclusive fitness of first-born lamb). For all x ∈ [x, x̄] andk ∈ [0, 1], the
inclusive fitness of a first-born lamb that is weaned at agex is

H(x, k) = 51(x)+ k52(x). (1)

Hamilton’s original model focused on a special class of interactions between relatives
in which the effect that one’s own actions have on a relative’s fitness does not depend on
the relative’s actions and vice versa. There are many plausible examples of game-theoretic
interactions between siblings that lack this independence and in which Hamilton’s rule does
not correctly predict equilibrium behavior.13

In the simple weaning model considered in this paper, however, the action of the first-born
affects the survival probability of the second-born, but the second-born can not affect the
survival probability of the either offspring. In this environment, the independence property
assumed by Hamilton is satisfied. We will show that for this model, if first-born lambs
could control their age at weaning, then in monomorphic equilibrium they would act as
if they were attempting to maximize their inclusive fitness, just as Hamilton’s rule would
predict.

Lemma 1. If first-born lambs are able to dictate whether they are weaned at age x or at
age x′ and if a single genetic locus determines the lambs’ demands, then a monomorphic
population in which first-born lambs demand to be weaned at x will be invaded by a
rare dominant allele which causes lambs to demand to be weaned at x′, if and only if
H(x′, k) > H(x, k) where k is the coefficient of relationship between the two offspring.

Proof: Consider a monomorphic population in which homozygous normal first-born
lambs demand to be nursed until agex. Now suppose that a rare dominant allele ap-
pears, such that first-born lambs who carry a copy of the rare allele always demand to be
nursed until agex′ 6= x. Almost every lamb born with the rare allele will have one parent
who is heterozygous for this allele and one who is homozygous normal.

Half of the offspring who carry the rare allele will be first-born and half will be second-
born lambs. All first-born lambs who carry the rare allele will demand to be nursed until
agex′ and will have survival probability51(x′).

The survival probability of a second-born lamb who carries the rare allele will be52(x′) if
its older sibling also carries this allele and52(x) if its sibling is homozygous for the normal
allele. The probability that a second-born who carries the rare allele has an older sibling
who also carries this allele is (by definition)k. The survival probability of a second-born
lamb who carries the rare allele is thereforek52(x′)+ (1− k)52(x).

Since half of the carriers of the rare allele are first-born and half are second-born, the
average survival probability of offspring who carry the rare allele will be

1

2
51(x

′)+ 1

2
(k52(x

′)+ (1− k)52(x)). (2)

Since the alternative allele is rare, almost all copies of the normal allele are carried by
homozygous normal individuals who have homozygous normal siblings. Half of them are
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older siblings and half are younger siblings. Therefore the average survival probability of
carriers of the normal allele is just

1

2
51(x)+ 1

2
52(x). (3)

It follows that the alternative allele can invade the population only if

1

2
51(x

′)+ 1

2
(k52(x

′)+ (1− k)52(x)) >
1

2
51(x)+ 1

2
52(x). (4)

The expression in Eq. (4) is equivalent to

51(x
′)+ k52(x

′) > 51(x)+ k52(x). (5)

which in turn is equivalent toH(x′, k) > H(x, k).

Lemma 1 informs us that a population in which lambs choose to be weaned at agex can
not be a stable monomorphic population unless the weaning agex maximizesH(·, k) on
the interval [x, x̄]. Lemma 2 will establish that there is one and only one weaning age that
satisfies this condition. This allows us to define the first-born’s preferred weaning age as a
function of the degree of relatednessk between siblings.

Definition 11(First-born’s preferred weaning age). Fork∈ [0, 1], define the first-born’s
preferred weaning age to bex f (k) such that for allx in the interval [x, x̄], H(x f (k), k)
≥ H(x, k).

Using Assumption 2, it is a matter of straightforward calculus to verify that for all
v ∈ [0, 1] the derivativeHx(0, v) is positive and for allx ∈ [x, x̄], the second derivative
Hxx(x, v) is negative. It follows that there is a uniquex that maximizesH(·, v) on the
interval [x, x̄]. Therefore we have the following result.

Lemma 2. For all v ∈ [0, 1], the function H(·, v) is “single-peaked” in x with its peak at
x f (v). That is, H(x, v) is maximized at x= x f (v) and H(x, v) is strictly increasing in x
for x < x f (v) and strictly decreasing in x for x> x f (v).

From Lemmas 1 and 2 it follows that ifx 6= x f (k), a monomorphic population of lambs
who demand a weaning age ofx can be invaded by a rare dominant allele that causes lambs
to demand a weaning age ofx f (k). Thus we conclude the following.

Proposition 1. If first-born lambs are able to dictate the age at which they are weaned
and if a lamb’s choice of weaning age is determined by a single genetic locus, then in a
stable monomorphic equilibrium it must be that first-born lambs demand a weaning age of
x f (k)where k is the coefficient of relationship between two lambs born to the same mother.
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We can also demonstrate that if first-born lambs can dictate the age of weaning, then in
equilibrium the higher the coefficient of relationship between a mother’s two lambs, the
earlier the first-born will choose to be weaned.

Remark 3. The first-born’s preferred weaning agex f (k) is a decreasing function of the
coefficient of relatednessk between maternal siblings.

Proof: The first-order calculus condition for findingx f (k) is

Hx(x, k) = 5′1(x f (k))+ k5′2(x
f (k)) = 0 (6)

Differentiating both sides of Eq. (6) with respect tok and rearranging terms, we find that

d

dk
x f (k) = − 5′2(x

f (k))

5′′1(x f (k))+ k5′′2(x f (k))
< 0 (7)

where the inequality follows from Assumption 2 which requires that5′2(x)<0,5′′1(x
f (k))

< 0 and5′′2(x
f (k))<0.

It is instructive to look at a geometric representation of these results. Since the point
x f (k) maximizesH(x, k)=51(x)+ k52(x) on the survival possibility frontier, the first-
order conditions for maximization require that the slope of the survival possibility frontier,
which is

5′2(x
f (k))

5′1(x f (k))

is equal to−1/k. This means that in figure 1 we can find the pointF = (51(x f (k)),
52(x f (k))), by finding the point at which the survival possibility frontier is tangent to a
line with slope−1/k. In figure 1, we have drawn a tangent line through the pointF with
slope−2. This depicts the case of a monogamous species wherek= 1/2 and−1/k=−2.
For higher values ofk, it must be that−1/k is smaller in absolute value and the tangency
will lie further to the left, which corresponds to lower values ofx.

3.2. What would mothers choose?

What age of weaning would we expect to find in a population where tough-minded ewes
are able to dictate the age of weaning to their pliant lambs?

The answer to this question is simple and not surprising. The only stable monomorphic
equilibrium would be one in which each mother weaned her first-born at the age that
maximizes the expected total number of her surviving offspring.

Despite the simplicity of this answer, we believe it is important to understand exactly why
it is true. Thus, in the Appendix we prove Lemma 3 in what may seem to be excruciating
detail. The importance of proving, rather than simply asserting this result will become more
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apparent later when we show that if the loci for juvenile and parental behavior are tightly
linked, monomorphic populations can sometimes be invaded by alleles that mandate wean-
ing at an age that gives them a smaller expected number of surviving offspring than that
enjoyed by normal mothers.

Lemma 3. If ewes are able to dictate whether their lambs are weaned at age x or at age
x′ and if a single genetic locus determines a ewe’s weaning strategy, then a monomorphic
population in which first-born lambs are weaned at x can be invaded by a rare dominant
allele for weaning at age x′ if and only if51(x′)+52(x′)>51(x)+52(x).

From Lemma 3, the following result is immediate.

Proposition 2. If ewes are able to dictate the age at which they wean their first-born
and if this action is determined by a single genetic locus, then in a stable monomorphic
equilibrium it must be that mothers will wean their first-born at the age xp where xp

maximizes51(x)+52(x) on the interval[x, x̄].

This allows us to determine the mother’s preferred weaning age.

Definition 12(Maternal optimal weaning age). The maternal optimal weaning age is
defined to bexp where51(xp)+52(xp)≥51(x)+52(x) for all x in the interval [x, x̄].

The distribution of survival probability between first-born and second-born that corre-
sponds to the maternal optimal weaning agexp is shown on figure 1. This is the point
P= (51(xp),52(xp)), where the slope of the survival probability frontier atP is−1.

From the definition ofH(x, v), we see that51(x)+52(x)= H(x, 1). Thereforexp=
x f (1), and sincek< 1, it is immediate from Remark 3 thatxp< x f (k). This implies the
following.

Proposition 3. If mothers are able to dictate the age at which their first-born is weaned,

then in stable monomorphic equilibrium, the first-born will be weaned at an earlier age
than would be the case in stable monomorphic equilibrium if the first-born were able to
dictate the weaning age.

4. Resolving the genetic conflict

4.1. The lamb who would call wolves

We have shown that in an equilibrium where first-born lambs could choose their age of
weaning, they would choose a later date than that which would maximize the number of
surviving offspring produced by their mothers. Like Alexander, we may ask, ‘So what?
Mother sheep are bigger, stronger, and can run faster than their lambs. Surely the mother has
the physical ability to enforce her own choice of weaning age.’ But, as Eshel and Feldman
pointed out, the lamb is not limited to physical coercion as a means of enforcing its will and
the resolution of parent-offspring conflict may not always coincide with the parent’s will.
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Figure 2. Survival probability frontier with a first-born extortionist.

Let us explore one strategy by which first-born lambs may be able to blackmail their
mothers into letting them nurse to an agex> xp wherexp is the age of weaning that
mothers would dictate if they had full control of the behavior of their lambs. Suppose that
first-born lambs are genetically programmed to use the following decision rule: ‘Demand
to be nursed until you reach agex. If you are younger thanx and your mother does not let
you nurse, then bleat so loudly that you will attract predators.’14

If a first-born lamb uses this strategy and if its mother weans it before agex, the lamb will
make an awful ruckus, attract a predator, and get eaten; the mother will lose her first-born.
The lamb’s extortionary strategy changes the shape of the survival probability frontier in
such a way that with the altered survival probability frontier, the mother will maximize
her number of descendants by yielding to her first-born’s demand. In figure 2, we sketch
the survival probability frontierABCD for the offspring of a sheep whose first-born lamb
adopts the extortionary strategy demandingx. If the mother allows the lamb to nurse until it
reaches agex (the lamb’s preferred age) it will behave normally, but if the mother attempts
to wean it before agex, it will bleat suicidally. The pointC represents the distribution of
survival probabilities(51(x),52(x)) between her two offspring if the mother accedes to
the lamb’s demand to be nursed until agex.

When the first-born pursues this extortionary strategy, the distribution of survival proba-
bility the mother would have chosen to maximize her expected number of surviving offspring
(point P in figure 2) is no longer accessible to her. Given the restricted survival probability
frontier imposed by the first-born’s threat, the expected number of surviving offspring is
maximized at the pointC= (51(x),52(x)).

4.2. Equilibrating behavior of parents and offspring

Readers familiar with the notion of subgame perfection in game theory are likely to be
skeptical that a first-born lamb’s threat ‘Feed me or I will bleat until a wolf eats me,’ would
be respected in equilibrium. Certainly this threat is not credible in the sense that if a rational
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lamb who made this threat was ignored by its mother, it would not find it in its interest
to commit suicide by bleating. Rational mother sheep, in appraising this situation would
realize that their rational progeny would not carry out this incredible threat and would ignore
it.15 But even economists are likely to quail at attributing such powers of ratiocination to
a sheep. Instead of making a priori assumptions on the mental abilities of sheep, we will
posit that they are genetically programmed to use strategies as lambs and adults that lead to
successful reproduction of the genes that program their behaviors and we will investigate
possible equilibrium outcomes. In fact, we will see that genetically programmed strategies
allow players to commit to playing subgame-imperfect strategies in a manner which would
not be possible for rational players.

An evolutionary model of the resolution of conflicting reproductive interests of parents
and offspring requires that we specify the genetic basis of childhood behavior, and its
relation to adult behavior. In this discussion, we will assume that the alleles at one genetic
locus control an individual’s behavior towards its parents and siblings when it is a child,
and that the alleles at a second locus control its behavior as a mother. As we will show, the
extent of linkage between these two loci will be crucial in determining the resolution of this
conflict.

It will be useful to spell out more detailed ‘rules of the game’ that apply in encounters
between a first-born lamb and its mother. Let us assume that each day after the lamb reaches
the first possible age of weaning, its mother either offers to nurse the lamb or she refuses to
nurse it. If the mother offers to nurse the lamb, the lamb can either accept nursing or refuse
to be nursed. If the mother refuses to nurse the lamb, it can either submit to its mother’s
refusal or loudly demand to be fed despite its mother’s refusal.

We will simplify our task by confining our attention to a restricted class of strategies.
We assume that mothers must use a strategy from a class of strategies that we callx-offer
strategiesand that lambs must use a strategy from a class of strategies that we callx-demand
strategies.

A ewe who follows anx-offer strategywill act according to the rule: ‘Offer to nurse your
first-born if it is younger thanx. Refuse to allow it to nurse if it is older thanx.’

We consider two kinds ofx-demand strategies, which differ in the action that a lamb
takes if its mother offers to let it nurse beyond the agex. A lamb that uses either type of
x-demand strategy will bleat and demand to be fed if its mother refuses to nurse it before
it reaches agex. A lamb who follows thegreedy x-demand strategywill continue to nurse
beyond agex if its mother permits it to do so. A lamb who follows thetemperate x-demand
strategywill reject nursing after it reaches agex even if its mother would permit it to nurse.

4.3. Invasion one locus at a time

A necessary condition for a population to be a stable monomorphic equilibrium in a two-
locus model is that this population can not be invaded by a rare dominant allele at either
of the two loci. In this section, we will show that for our weaning model, this necessary
condition does nothing to narrow the range of possible resolutions of the conflict between
parent and offspring. In fact the maternal optimumxp as well the preferred age of first-born
x f (k) and all ages in between can be maintained by monomorphic populations that can
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not be invaded by rare alleles at a single locus. This is stated formally by the following
proposition, which we prove in the Appendix.

Proposition 4. For any x such that xp≤ x≤ x f (k), a monomorphic population in which
all first-born lambs use x-demand strategies and all mothers use x-offer strategies cannot
be invaded by a dominant allele that mandates that first-borns use an x′-demand strategy for
x′ 6= x, nor can it be invaded by a dominant allele that mandates that mothers use x′-offer
strategies for x′ 6= x.

Proposition 4 establishes conditions under which a monomorphic population cannot be
invaded by a rare allele at a single locus. As we will show in later discussion, this result
is not sufficient to establish that these outcomes are stable against invasion by pairs of rare
alleles at the two loci, even when these loci areunlinked.

4.4. Perfectly linked loci

In a two-locus model, a monomorphic population that is stable against independent inva-
sions at each of the two loci might still be invaded simultaneously by small populations
of two dominant mutant alleles, one at each locus, where these alternative alleles have
complementary effects. It is particularly easy to see how this works in the case where the
two loci are perfectly linked. A two-locus model with perfect linkage is equivalent to a
single-locus model, where the characteristics controlled by the two loci are both determined
by the contents of a single locus. For example, a two-locus parent-offspring model with
perfect linkage is equivalent to one in which a single locus controls behavior of individuals
both when they are children and when they are parents. It might be that a monomorphic
canbe invaded by an allele that changed the behavior ofbothparents and children although
the original population cannot be invaded either by a novel allele that changes behavior of
children and not of parents, or by a novel allele that changes behavior of parents but not
children.

In our simple weaning model, if there is perfect linkage between the loci that determine
the behavior of first-born lambs and the behavior of mother sheep, we have a striking result.
The only stable monomorphic equilibrium is one in which all lambs are weaned at the
maternal optimal age xp.

In order to show this result, we find it useful to consider two particular alleles, one found
at the locus that controls juvenile behavior and the other found at the locus that controls
maternal behavior. We will call these theAlexandrian alleles. If a mother and her lamb both
have these alleles the lamb and mother will both act to optimize the mother’s reproductive
interest. The Alexandrian allele for juvenile behavior causes first-born lambs to adopt the
greedyx strategy. The Alexandrian allele for maternal behavior causes a mother to nurse her
first-born until it reaches the maternal optimal weaning agexp and no longer. We will call
a first-born lamb who carries the Alexandrian allele for juvenile behavior anAlexandrian
lamb, and a mother who carries the Alexandrian allele for maternal behavior anAlexandrian
ewe, and we will call a sheep who carries both Alexandrian alleles afully Alexandrian sheep.
Sincex is the minimum possible weaning age, we see that an Alexandrian lamb will never
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demand to nurse unless its mother offers, but will always accept nursing if offered. In a
monomorphic population of fully Alexandrian sheep, every mother would offer to nurse
her first-born offspring until it reached agexp, and every first-born would nurse until this
age and then stop nursing without complaint. In the appendix we prove the following.

Proposition 5. With perfect linkage between the loci controlling the behavior of first-born
lambs and the behavior of mother sheep, any monomorphic population where lambs use
x-demand strategies and ewes use x-offer strategies and where x6= xp can be invaded
by the pair of Alexandrian alleles. Conversely, a monomorphic population of Alexandrian
sheep cannot be invaded by rare alleles for using any alternative combination of strategies
by lambs and mothers.

4.5. Partially linked loci

If two loci are perfectly linked and if individuals carrying a novel allele at each locus
reproduce more rapidly than normal individuals, then the novel allele combination will
be able to invade the population. But if the loci are less than perfectly linked, this is not
necessarily the case. In a population where the alternative alleles are rare and where mating
is random, almost all individuals who carry both alternative alleles will be heterozygous at
both loci. Only the fraction 1− r of these double heterozygotes will ‘breed true’ in the sense
of transmitting the two rare alleles together rather than separately. Given that individuals
who carry only one of the two rare alleles reproduce less rapidly than normal individuals,
the pair of rare alleles will be able to invade the population only if the reproduction rate of
double heterozygotes is greater than 1− r times as large as that of the normals. We sketch
a proof of this lemma in the Appendix.

Lemma 4. In a two-locus model that satisfies Assumption1, consider a monomorphic
population that cannot be independently invaded by a mutant allele at either of the two
loci. Let the recombination fraction between the two loci be r where0≤ r ≤ 1. Suppose
that the offspring of individuals with two normal alleles at each locus have a survival
probability of S, and that double heterozygote offspring with one normal parent and one
double heterozygote parent have a survival probability of S′. The pair of novel alleles will
be able to invade the initial monomorphic population if and only if(1− r )S′> S.

The following result is an immediate consequence of Lemma 4.

Proposition 6. Suppose that the nursing demand strategies of first-born lambs and the
nursing offer strategies of ewes are controlled by two genetic loci which have a recombi-
nation fraction r. A monomorphic population where first-borns use x-demand strategies
and mothers use x-offer strategies can be invaded jointly by a pair of alleles that mandate
x′-demand strategies for offspring and x′-offer strategies for first-born if and only if

(1− r )(51(x
′)+52(x

′)) > 51(x)+52(x). (8)
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In the Appendix we prove a pair of corollaries to Proposition 6 that directly address
the question of whether the conflict of genetic interest between parents and offspring will
be resolved in favor of parents or of children. The first of these shows that with a mild
additional assumption on payoffs, if the loci that control juvenile and maternal behavior
are unlinked, then any weaning age between the maternal optimum and the first-born’s
preferred weaning age can be sustained as a monomorphic equilibrium.

Corollary 1. If the loci that determine behavior of first-born lambs and of mothers are
unlinked(so that r= 1/2) and if51(xp)≥52(xp), then for all x such that xp≤ x≤ x f (k),
there is a stable monomorphic equilibrium in which lambs are weaned at age x.

The second result shows that as the degree of linkage increases, the range of possible
weaning ages in stable monomorphic equilibria converges toward the maternal optimal age.

Corollary 2. Where the recombination fraction is r, the set of weaning ages that are
consistent with a stable monomorphic equilibrium is an interval with lower bound xp and
with an upper bound that decreases as r decreases and approaches xp as r approaches
zero.

4.6. Mothers don’t always seek to maximize expected number of surviving offspring

Earlier, we promised to show that where there is linkage between the loci controlling
maternal and juvenile behavior, selection may not favor maternal behavior that maximizes
the number surviving offspring. Here is an example.

Let us suppose that the loci that control the behavior of first-born lambs and of mother
sheep are perfectly linked. Consider a monomorphic population in which normal first-born
lambs pursuex-demand strategies and normal mothers pursuex-offer strategies, where
x> xp. The expected number of surviving offspring that a normal mother will have is
51(x)+52(x). Now suppose that a small proportion of paired Alexandrian alleles is
introduced into this monomorphic population. The first-born Alexandrian lambs will use
the greedyx-demand strategy and the Alexandrian ewes will use thexp-offer strategy.

When the Alexandrian alleles are rare, a mother sheep who carries both Alexandrian
alleles will almost certainly be a heterozygote at each locus. With probability 1/2, an
Alexandrian ewe’s first-born will inherit her Alexandrian alleles. In this case it nurses until
it reaches the agexp at which time its mother stops offering to nurse it and it then stops
nursing without complaint. Then its survival probability will be51(xp). With probability
1/2, the first-born of an Alexandrian ewe will not inherit her Alexandrian alleles. In this
case it uses thex-demand strategy. Since its mother refuses to nurse her first-born beyond
agexp, the lamb will not survive. Whether or not her first-born has Alexandrian alleles,
the mother will wean it at agexp and hence the survival probability of the second-born
will be52(xp). It follows that the expected number of surviving offspring that the mother
produces is

51(xp)

2
+52(x

p).
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As we know from Proposition 5, the pair of Alexandrian alleles will invade the original
monomorphic population. But while they are rare, Alexandrian ewes actually have a smaller
expected number of surviving offspring than normal ewes (at least ifx is sufficiently close to
xp). We can see this as follows. The difference between the expected number of surviving
offspring of a normal ewe and an Alexandrian ewe is

51(x)+52(x)−
(
51(xp)

2
+52(x

p)

)
(9)

Sincex> xp, the Expression 9 will have the same sign as

51(x)−51(xp)

x − xp
+ 52(x)−52(xp)

x − xp
+ 51(xp)

2(x − xp)
(10)

In the limit asx → xp, the first two terms of Expression 10 approach respectively
5′1(x

p) and5′2(x
p), both of which are finite, while the third term approaches infinity. This

implies that forx sufficiently close toxp, the expected number of surviving offspring of
Alexandrian ewes is lower than that of normal ewes.

How can a rare Alexandrian allele invade, even though mothers who carry this allele
have fewer expected surviving offspring than normal mothers? The answer is simple and
instructive. Although Alexandrian ewes, unlike normal ewes, lose half of their first-born to
wolves, the offspring that are lost to wolves do not carry the Alexandrian allele pair. In fact
for an Alexandrian ewe, the number of surviving offspring who carry the Alexandrian gene
pair is(51(xp)+52(xp))/2. Hence the expected number of copies of the Alexandrian al-
leles that are passed to surviving adults in the next generation is also(51(xp)+52(xp))/2.
This exceeds the number of copies(51(x)+52(x))/2 of a normal allele that are passed
from one generation to the next.

5. Conclusions

There is much to be learned from our simple pastoral fable of weaning conflict. We began
by posing a pair of hypothetical questions. At one extreme, at what age will first-born lambs
be weaned if mothers have no control of the weaning age and natural selection operates
exclusively on the age at which first-borns choose to wean themselves? At the other, at what
age will first-born lambs be weaned if mothers have unchallenged control over weaning age
and natural selection acts exclusively on the weaning age that mothers choose?

In this model, the answers to both questions turn out to be answers that would be predicted
by users of Hamilton’s rule. If first-born lambs could choose, they would pick the age of
weaning that maximizes a weighted average of their own survival probability and that of
their younger siblings. Here, the relative weight placed on the younger sibling is simply
the coefficient of relationship between a mother’s two lambs. If mothers could choose, they
would pick the age of weaning that maximizes an equally weighted average of survival
probabilities of first and second born. The weaning agex f (k) that the first-born would
choose is always greater than the agexp that ewes would choose.
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The answers to these questions define the extent of the genetic conflict over weaning age.
How will this conflict be resolved? We find that the answer tothis question depends on
the strategies available to mother and offspring, and on the details of the process by which
these strategies are inherited. We first considered the possibility of unilateral change in off-
spring strategies or maternal strategies. We found that there is a large class of monomorphic
equilibria that cannot be invaded unilaterally by mutant alleles at the locus that controls the
behavior of lambs, or by mutants at the locus controlling the behavior of mothers. Such
equilibria support any age of weaningx between the parental optimumxp and the offspring
optimumx f (k). Thus if single-locus mutations were the only kind observed, there would
be little theoretical support for the Alexander view that natural selection would inevitably
result in the outcomexp that maximizes the reproductive interests of the mother.

Two-locus genetic models, however, allow the possibility that novel pairs of maternal and
offspring strategies can invade in association with one another. We found that this possibility
gives more support to the Alexander-Becker viewpoint. If the genetic loci that control
behavior of first-born and behavior of mothers are perfectly linked, then the Alexander-
Becker view is dramatically vindicated. Theonly outcome that can be a monomorphic
equilibrium is the one in which mothers are able to enforce their will, i.e., in which first-
born are weaned at their mothers’ preferred outcomexp. In intermediate cases, where
linkage is not perfect, we have intermediate results. The greater the probability that genetic
recombination will break up allele combinations at maternal and offspring strategy loci,
the further the equilibria can stray from the mothers’ preferred outcome. For sufficiently
loose linkage, the Alexander-Becker position again collapses and we find that every weaning
age between the maternal optimumxp and the first-born’s preferred weaning agex f (k) can
be an equilibrium.

Appendix

Proof of Lemma 3: Suppose that the ewe is able to dictate the age of weaning absolutely,
without resistance from her offspring. Then we need to concern ourselves only with a
one-locus model in which the pair of alleles at a single locus controls the age at which
mothers wean their first-born. Consider a monomorphic population in which mothers wean
their offspring at agex. Suppose that to this population is added a small proportion of an
alternative dominant allele, such that mothers heterozygous for this alternative allele wean
their offspring at agex′.

As we noted in Remark 1, Assumption 1 enables us to determine whether the alternative
allele can invade the population by comparing the average survival probability of lambs
born with a single copy of the rare allele to that of lambs born with two copies of the normal
allele.

Since mating is random and the alternative allele is rare, almost all individuals with this
allele will be heterozygotes, with one copy of the alternative allele and one copy of the
normal allele. A lamb who inherits the rare allele is equally likely to be a first-born or a
second-born and (independently of whether it is first-born or second-born) is equally likely
to inherit the allele from its mother or from its father. Thus 1/4 of all lambs fall into each
of these four categories.
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Since mothers who carry the alternative allele wean their offspring at agex′, a first-born
who inherits this allele from its mother is weaned at agex′ and has survival probability of
51(x′). If a second-born inherits this allele from its mother, the mother will have weaned
the first-born at agex′ and the survival probability of the second-born must be52(x′).

If a lamb inherits the alternative allele from its father , then since mating is random and the
alternative allele is rare, the lamb will almost certainly have a homozygous normal mother,
who will wean her first-born at agex. Therefore a first-born who inherits the alternative
allele from its father will have survival probability51(x) and a second-born who inherits
the alternative allele from its father will have survival probability52(x).

It follows that the average survival probability of lambs born with the mutant allele is

1

4
(51(x

′)+52(x
′)+51(x)+52(x)). (11)

Since the alternative allele is rare, almost all homozygous normal offspring have ho-
mozygous normal mothers who wean their first-born at agex. These offspring are equally
likely to be first-born or second-born, so their average survival probability is

(51(x)+52(x))/2 (12)

The alternative allele for weaning at agex′ will be able to invade a monomorphic popu-
lation of mothers who wean at agex if and only if Expression 11 exceeds Expression 12.
Subtracting Expression 12 from Expression 11 and multiplying the result by 4, we see that
the rare allele will invade if and only if

51(x
′)+52(x

′) > 51(x)+52(x). (13)

Proof of Proposition 4: Let us first show that the normal population cannot be invaded
by an allele that causes lambs to demand nursing until an age greater thanx. Suppose that
a rare allele at the locus controlling juvenile behavior causes first-born lambs to use anx′-
demand strategy, wherex′> x. Since mothers all use thex-offer strategy, a first-born lamb
that usesx′-strategy will be confronted with a mother who refuses to let it nurse after agex.
A first-born carrying this rare allele will not be able to nurse any longer than a normal lamb,
but will reduce its survival probability by bleating when its demand is refused. Whether or
not its older sibling carries the rare allele, a second-born lamb who carries the rare allele
will have survival probability52(x) since its mother will nurse the first-born only until age
x. Thus first-born carriers of the rare allele have lower survival probability than first-borns
with two normal alleles, and second-born carriers of the rare allele have the same survival
probability as normals. It follows that on average, carriers of the rare allele will have lower
survival probability than normals and hence this allele cannot invade.

Next we show that the normal population cannot be invaded by an allele that causes
first-born lambs to accept a weaning agex′< x, regardless of whether they use a greedy
x′-demand strategy or a temperatex′-demand strategy. Since its mother would offer to
nurse it until agex, a first-born lamb carrying a dominant allele for the greedyx′-demand
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strategy would be offered—and would accept—the opportunity to nurse until the normal
agex. Therefore both first-born and second-born carriers of this allele would have exactly
the same survival probability as first-borns and second-borns in the normal population and
could not invade.16 A first-born lamb with a dominant allele for the temperatex′-demand
strategy would be offered the chance to nurse until agex but would stop nursing at age
x′. Sincex′< x< x f (k), it follows from Remark 2 thatH(x′, k)< H(x, k) and therefore
Proposition 1 implies that the allele for a temperatex′-demand strategy cannot invade the
original population.

It remains to be demonstrated that wherexp≤ x≤ x f (k), a normal population ofx-
demander first-borns andx-offerer mothers can not be invaded by an allele that alters
maternal behavior. Wherex′< x, a mother who carries a rare dominant allele for anx′-
offer strategy will lose her offspring to wolves. If a mother uses anx′-offer strategy where
x′> x, then those of her offspring who are greedyx-demand strategists will nurse until age
x′ and those who are temperatex-demand strategists will continue to nurse only until agex.
Since51(x)+52(x) is a decreasing function ofx for x> xp, it follows that the expected
number of surviving offspring of the rarex′-offer strategists will be no higher than that of
normal parents (and strictly lower if some of the offspring are greedyx-demand strategists.)

Proof of Proposition 5: Suppose that a small proportion of perfectly linked mutant
Alexandrian alleles for first-born behavior and the behavior of mothers appears in a mono-
morphic population in which lambs usex-demand strategies and ewes usex-offer strategies.

If a first-born lamb inherits the Alexandrian alleles from its mother, then the mother must
be using anxp-offer strategy and so the lamb will be weaned at agexp and have survival
probability51(xp). If a second-born lamb inherits the Alexandrian allele from its mother,
then it must be that the mother weans its older sibling no later thanxp 17 and so the survival
probability of the younger sibling will be at least52(xp). Since a lamb inheriting the
rare allele pair from its mother is equally likely to be first-born or second-born, the average
survival probability of lambs that inherit the rare Alexandrian allele pairs from their mothers
is at least(51(xp)+52(xp))/2.

If a first-born lamb inherits the rare Alexandrian alleles from its father, then its mother
almost certainly will be homozygous normal and will use anx-offer strategy. A first-born
lamb who inherits the Alexandrian alleles from its father will be offered nursing until age
x by its normal mother. Since an Alexandrian lamb accepts exactly what its mother offers,
such a first-born will be weaned at agex and have survival probability51(x). Since the
first-born is weaned at agex, regardless of whether it carries an Alexandrian allele or two
normal alleles, the second-born will have survival probability52(x). Therefore the average
survival probability of lambs that inherit the rare Alexandrian alleles from their fathers is
(51(x)+52(x))/2.

A lamb that is born with the Alexandrian alleles is equally likely to have inherited this
allele from its mother or from its father. Therefore the average survival probability of lambs
that carry this allele pair is:

1

4
((51(x

p)+52(x
p)+51(x)+52(x)) (14)
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Since the average survival probability of normal first-born lambs is

(51(x)+52(x))/2, (15)

the Alexandrian alleles will be able to invade the normal population if Expression 14 exceeds
Expression 15. Subtracting the latter expression from the former and multiplying by 4, we
see that this is equivalent to

51(x
p)+52(x

p) > 51(x)+52(x) (16)

which is always true sincexp strictly maximizes51(xp)+52(xp). It follows that the
Alexandrian alleles can always invade the original population.

Verifying the converse statement is straightforward.

Proof of Lemma 4: Consider a population that is orginally monomorphic at two loci,A
andB, where the normal alleles at these loci are denotedA1 andB1 respectively. Suppose
that a small proportion of alternative alleles arises, where the alternative allele at locus
A is denotedA2 and the alternative allele atB is denotedB2. Since mating is random,
almost all individuals carrying the rare alternative alleles will mate with individuals who
are homozygous for the normal alleles at both loci. Therefore almost all carriers of the
alternative alleles will be single or double heterozygotes, having inherited either one or two
of the rare alleles from a single parent. Individuals who are heterozygous at theA locus
but homozygous for the normal allele at theB locus (i.e.,A1A2B1B1 individuals) will be
called ‘Type 1’ individuals. Those who are heterozygous at theB locus but homozygous at
the A locus will be called ‘Type 2’ individuals. Individuals who are heterozygous at both
loci will be called ‘Type 3’ individuals. Fori = 1, 2, 3, let εi (t) denote the fraction of the
entire population that is typei at timet .

Let Si be the ratio of the expected number of surviving offspring produced by a Type
i individual relative to the expected number of surviving offspring of normal individuals.
Wherer is the recombination fraction, we see that Type 1 individuals can be produced either
as the offspring of another Type 1 individual with a normal mate, or as the offspring of a
Type 3 in the event of recombination. Similarly for Type 2 individuals. Therefore when
the allelesA2 andB2 are rare, we have

ε1(t + 1) = S1ε1(t)+ 1

2
r S3(t)ε3(t) and (17)

ε2(t + 1) = S2(t)ε2(t)+ 1

2
r S3(t)ε3(t). (18)

Type 3 individuals can be produced either as offspring of double heterozygotes when re-
combination does not occur, or they can occur as offspring of a mating between a Type 1 and
a Type 2 individual in the event that recombinationdoesoccur. Since mating is random and
Types 1 and 2 are rare, the proportion of matches between Types 1 and 2 to the number of
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these types is becomes arbitrarily small asε1 andε2 become small. Therefore the equation
for e3(t + 1) can be written as

ε3(t + 1) = (1− r )ε3(t)+ O(ε) (19)

where the termO(ε) can be made arbitrarily small as the invading proportionsεi are made
small. It is easily verified that the eigenvalues of the system of equations are arbitrarily
close toS1, S2, and(1− r )S3 when the rare alleles are sufficiently rare. By assumption
0< S1< 1 and 0< S2< 1. Therefore, when the proportion of invaders is small, all of the
eigenvalues of the system will be between 0 and 1 if and only if(1− r )S3< 1.

Proof of Corollary 1: Since51(·) is an increasing function, since by assumption51(xp)

≥52(xp), and since (by definition ofxp) 51(xp)+52(xp)≥51(x′)+52(x′) for all
x′ ∈ {x, x̄}, it must be that for allx> xp,

51(x)+52(x) > 51(x
p)

= 1

2
(51(x

p)+51(x
p))

≥ 1

2
(51(x

p)+52(x
p))

≥ 1

2
(51(x

′)+52(x
′))) (20)

for all x′ ∈ {x, x̄}. But from Proposition 6 it follows that whenr = 1/2 a monomorphic
population in which all offspring usex-demand strategies and all mothers usex-offer
strategies can be invaded by a pair of alleles that mandatex′-demand strategies for offspring
andx′-offer strategies for mothers only if

51(x)+52(x) <
1

2
(51(x

′)+52(x
′)). (21)

Therefore the initial monomorphic equilibrium cannot be invaded by any pair of alleles that
mandate anx′-demand strategy in lambs and anx′-supply strategy in mothers. It easy to
see that if no pair of “coordinated” strategies of this type can invade, then no other pair of
strategies can invade the initial population.

Proof of Corollary 2: From Proposition 4 it follows that a monomorphic population in
which lambs usex-demand strategies and mother sheep usex-offer strategies can be invaded
by Alexandrian alleles if and only if

(1− r )(51(·)+52(·)) > 51(·)+52(·). (22)

According to Lemma 2 the function51(·)+52(·) is a continuous single-peaked function
of x that is maximized atxp. Therefore the set ofx’s in the interval [xp, x f (k)] for which
Inequality 22 is true must be an interval with greatest lower boundxp and with a least upper
boundx(r ) such thatx(r ) is an decreasing function ofr and where limr→0 x(r )= xp.
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Notes

1. This literature is ably surveyed by Browning (1992).
2. A definition of thecoefficient of relationshipbetween two individuals appears later in this paper. (Definition 8)
3. Trivers’ (1985) textbookSocial Evolutiondevotes a chapter to parent-offspring conflict, with several engaging

descriptions of efforts by bird and mammal offspring to manipulate their parents and vice versa.
4. By this device, we sidestep many interesting issues of sibling rivalry that arise when siblings are alive

concurrently and compete directly with each other. We hope to address some of these matters in a sequel to
this paper. An excellent source of information on this topic is Mock & Parker’s (1997) book, which contains
thorough accounts both of theory and field observation of sibling rivalry in birds, mammals, insects, and plants.

5. In this paper we consider only autosomal (non-sex-linked) genes, which obey the simple rules of Mendelian in-
heritance. Genes located on the sex chromosomes (the X and Y chromosomes in mammals) follow somewhat
more complicated rules of inheritance.

6. For economists who want to read more about two-locus models, we recommend chapter 8 of Roughgarden’s
(1996) textbook as a clear introduction to this topic. More detailed and general discussions of conditions
under which a single mutant allele can invade a population in a multilocus model can be found in Eshel &
Feldman (1984) and Liberman (1988).

7. Because we define invasion to occur only when invading gene reproducesfasterthan the normals, this is weaker
notion of a stable equilibrium than one which excludes ‘drift’ among alleles that reproduce equally rapidly. It is
also a weaker concept than Maynard Smith’s notion of evolutionarily stable strategies since we do not impose
restrictions on the case in which a mutant gene reproduces exactly as rapidly as the normal genes. Thus the
equilibria studied here may not be resistant to the possibility of novel alleles reaching high frequency by drift.

8. Recombination fractions greater than 1/2 are almost never observed in nature.
9. A more commonly-used definition (as applied to sexual diploids) is ‘The coefficient of relationship between

two individuals is the proportion of genes in one that are “identical by descent” to genes present in the other.’
For the study of invasion of a monomorphic population by rare mutant alleles, our definition operationalizes
the standard definition.

10. Unless female sheep have been secretly cloning themselves for some time, we would not expect to find sur-
viving real breeds in which ewes on average have fewer than two surviving lambs per lifetime. Economists,
of course, are accustomed to dealing with abstract sheep—the traditional economists’ sheep, unlike a real
sheep, produces wool and mutton in fixed, unalterable proportions.

11. Haig (1992, p. 153) describes the situation with a colorful analogy: ‘Suppose that a mother buys a milkshake
to be shared among her children, but the milkshake has only a single straw. If the first child takes a drink
and passes the remainder on to the second, and so on down the line, then the greater the consumption of each
child, the fewer children receive a drink.’

12. This curve is conceptually the same as the ‘utility possibility frontier’ that is commonly used in the theory of
welfare economics.

13. This was observed by Grafen (1979) and by Cavalli-Sforza & Feldman (1978, 1981). Mock & Parker (1997,
pp. 19–28) offer some particularly compelling examples of sibling interactions for which Hamilton’s rule
is violated. Hines & Maynard Smith (1979) and Bergstrom (1995) offer extensions of Hamilton’s rule that
apply to a broad class of game-theoretic interactions for which the original formulation of Hamilton’s rule is
not appropriate.

14. This is by no means the only sort of strategy an offspring might use to influence its mother (for example,
Eshel & Feldman (1991) consider a different class of strategies that serve a similar purpose).

15. Arthur Robson relates that as a child, he once threatened to hold his breath until his mother bought him an ice
cream cone. His mother, ever sensible, refused to capitulate. Given that Arthur himself now tells this story,
we can infer that his threat was not credible.



72 BERGSTROM AND BERGSTROM

16. Recall that by our definition, a rare allele can invade only if it reproducesfasterthan normal alleles.
17. Possibly earlier, if in the original population the older sibling is a temperatex demander andx< xp.
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