
Theoretical Population Biology 54, 146�160 (1998)

Signalling among Relatives
II. Beyond the Tower of Babel

Michael Lachmann and Carl T. Bergstrom
Department of Biological Sciences, Stanford University, Stanford, California 94305

Received April 24, 1997

Models of costly signalling are commonly employed in evolutionary biology in order to
explain how honest communication between individuals with conflicting interests can be
stable. These models have focused primarily on a single type of honest signalling equilibrium,
the separating equilibrium in which any two different signallers send distinct signals, thereby
providing signal receivers with complete information. In this paper, we demonstrate that in
signalling among relatives (modelled using the Sir Philip Sidney game), there is not one but a
large number of possible signalling equilibria, most of which are pooling equilibria in which
different types of signallers may share a common signal. We prove that in a general Sir Philip
Sidney game, any partition of signallers into equi-signalling classes can have a stable signalling
equilibrium if and only if it is a contiguous partition, and provide examples of such partitions.
A similar (but slightly stricter) condition is shown to hold when signals are transmitted
through a medium with signalling error. These results suggest a solution to a problem faced by
previous signalling theory models: when we consider the separating equilibrium, signal cost is
independent of the frequency of individuals sending that signal and, consequently, even very
rare signaller types can drastically affect signal cost. Here, we show that by allowing these rare
signallers to pool with more common signallers, signal cost can be greatly reduced. ] 1998
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Now the whole world had one language and a common speech.
��Genesis 11:1

1. INTRODUCTION

Honest communication among individuals with con-
flicting interests can be stable. In some models of signall-
ing, this stability is achieved by imposing a cost on the
signals, so that deception is not worthwhile. Such models
were proposed by Zahavi (1975, 1977), solidified with
mathematical analysis by Grafen (1990a, 1990b), and
expanded upon by many authors. In general, this costly
signalling framework has been developed with implicit
assumptions that make all signalling equilibria separat-
ing: Signals provide complete information in the sense
that different signallers always send distinct signals (see
e.g., Fudenberg and Tirole 1991). However, if signalling
has to be completely separating, then there can be only
one possible signalling equilibrium. In the signalling

system, there can then be only one possible relation
between signal and meaning, one possible ``language.''

If signals are not completely separating, there might
exist signalling equilibria in which some signallers of dif-
ferent qualities send identical signals. Can a signalling
equilibrium of this kind, termed a pooling equilibrium,
exist in systems of signalling among relatives?

Here, we use the Sir Philip Sidney (SPS) game
(Maynard Smith 1991) to investigate this and related
questions. We demonstrate that in the SPS game,
pooling equilibria can indeed be stable. This result
uncovers an additional complexity in the theory of
animal signalling. It reveals a world in which there exist
multiple stable signalling equilibria, multiple possible
relations between signal and meaning, multiple possible
``languages.''
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The basic models of costly signalling (e.g., Grafen
1990a, Maynard Smith 1991) did not take into account
perceptual error on the part of the signal receiver.
Johnstone and Grafen investigate the effects of percep-
tual error on signalling equilibria, and demonstrate that
costly signalling can be stable even with perceptual error
(Johnstone and Grafen 1992b; Grafen and Johnstone
1993; Johnstone 1994). In this paper we prove that in
systems with perceptual error, as in systems without,
there are multiple possible signalling equilibria.

We will show that for a given setting there exist multi-
ple signalling equilibria. A setting will be defined by
the conditions of the participants, the fitnesses, and the
signalling medium. These participant conditions are the
possible initial states for the signaller and the associated
probabilities of these states, the possible initial states of
the donor and the associated probabilities, and the
available donor responses. The fitnesses are the possible
fitness values (after all interactions have occurred) of
donor and signaller for all combinations of conditions. The
signalling medium defines a probability distribution of per-
ceived signals for every signal sent. In Sections 2, 3, 5, and
6, we assume that the medium is error-free, which means
that the signal received is always identical to the signal
sent. In Section 4 other media will be taken into account.

A signalling equilibrium is a tripartite entity: a set of
possible signals with their costs, a signaller strategy
specifying which of these signals to send for each of her
conditions, and a donor strategy specifying the donor's
response to each of the signals received, depending on her
own condition. This equilibrium is required to be a Nash
equilibrium with respect to a unilateral change of the
signaller's or the donor's strategy: No signaller will gain
by sending different signals, and no donor will gain by
responding differently to signals. Notice that this defini-
tion is broader than that given in the first paper of the
series (Bergstrom and Lachmann 1997, referred to from
here on as Signalling I) as it now encompasses even the
completely pooling equilibrium, the ``no-signalling equi-
librium,'' as a signalling equilibrium. In this paper we
ignore a class of degenerate mixed-strategy equilibria
known as hybrid equilibria (Fudenberg and Tirole 1991)
which exist for some settings. As in the previous paper,
we assume that the cost of the signal is incurred by the
signaller regardless of the donor response. The final
fitness of the signaller in a particular setting will be a
function of her own initial condition, the donor's initial
condition, the signal which she sends, and the response of
the donor to this signal.

In Section 2, we consider a discrete SPS game and
demonstrate that for the same signallers and donors, dif-
ferent sets of signals and costs lead to different stable

equilibria. At one particular equilibrium, each different
type of signaller distinguishes herself from every other
type. At other equilibria, two or more types send the
same signal. In Section 3, we prove that any partition of
signallers into contiguous classes (by quality) can be a
stable pooling equilibrium. In Section 4, we investigate
the effect of perceptual error on signalling equilibria.
Here we extend the methods of the previous section to
prove that multiple signalling equilibria also exist in
systems with perceptual error. In Section 5, we consider
a question raised at the end of Signalling I. Since, as
demonstrated in that paper, signal cost is independent of
signaller frequency, a single signaller can have dispropor-
tionately large effects on signal cost structure. Under
such circumstances, other signallers might benefit from
allowing such an individual to ``cheat,'' to send a signal
which is interpreted by signal receivers as indicating a
state other than the true state. We demonstrate that this
is indeed the case, and that such reorganizations of the
signalling system serve to create pooling equilibria out of
what were previously separating equilibria. In Section 6
we consider the question of when signallers in a com-
pletely pooling equilibrium benefit from adding a new
signal, to form two equi-signalling sets of individuals. In
that section we also show that the cost of the signal does
not have to stem from a conflict of interest between
signaller and signal receiver. Indeed, there can be costly
signalling equilibria even when signaller and receiver
have identical interests. In the discussion, we explain the
relationship of this paper to previous models, and
address the question of donor response to novel signals.
In the appendix, signal costs for stable signalling systems
are computed using the methods developed in Section 3.

In this paper we rely on game-theoretic analysis of
individuals attempting to maximize their inclusive fit-
nesses. We consider equilibria in the Nash sense, such that
neither player benefits from unilateral alteration of her
strategy. While this approach simplifies the analysis con-
siderably, the limitations discussed in Signalling I remain.

2. MULTIPLE SIGNAL EQUILIBRIA IN
THE DISCRETE SIR PHILIP SIDNEY
GAME

Consider a discrete SPS game, similar to that described
in the first paper of the series. Two players, a signaller
and a donor, are kin, with a coefficient of relatedness k
(Hamilton 1964; Cavalli-Sforza and Feldman 1978). The
donor is in possession of a single indivisible resource
which will guarantee fitness 1 (or 1 minus signal cost for
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the signaller) to whomever consumes it; she must decide
whether to consume it herself or to transfer it to her
relative. The signaller, in turn, may choose to send a
costly signal of need in an effort to influence the behavior
of the donor. The cost of the signal is incurred whether or
not the donor responds.

This section is intended to provide an introductory
illustration of the major results proven later in this paper:
that a single signalling setting can have several different
signalling equilibria, and that stable signalling equilibria
can exist in which different signallers send the same
signal. For this purpose, we will examine a simple setting,
namely the following discrete SPS game. The signaller is
in one of three equally probable states: ``desperate,''
``needy,'' or ``healthy.'' The donor is initially equally
likely to be in either of two possible states: ``needy'' or
``healthy.'' Table 1 shows, for the particular example
treated here, the probabilities and fitnesses in the absence
of the resource for each state. The responses available to
the donor are to transfer the resource, or to retain it.

This setting, given the definition of a signalling equi-
librium provided in the introduction, has four signalling
equilibria��one in which all signallers send the same
signal, two equilibria in which two distinct signals are
sent, and one equilibrium with three distinct signals. The
equilibria are illustrated in Figs. 1a�1d.

We are already familiar with the form of the first equi-
librium, in which all signallers send the same signal, with
cost 0. We describe this equilibrium in the previous paper
(there calling it the ``no-signalling'' equilibrium) and
demonstrate how, at this equilibrium, donors decide
whether to transfer or retain the resource, based on their
own condition alone. For the probability distribution
and fitnesses given in Table 1, a healthy donor will have
higher expected inclusive fitness when she transfers the
resource than when she retains it. By contrast, a needy
donor will have a higher expected inclusive fitness when
she retains the resource than when she transfers it. Con-
sequently, at this equilibrium, the donor strategy is to

TABLE 1

Initial Conditions of Signallers and Donors in the Discrete SPS Game of
this Section, with Associated Fitnesses and Probabilities.

Signaller Desperate Needy Healthy

Fitness 0.3 0.6 0.9
Probability 1�3 1�3 1�3

Donor Needy Healthy

Fitness 0.7 0.9
Probability 1�2 1�2

transfer if and only if she is healthy. This equilibrium is
depicted in Fig. 1a.

A second equilibrium takes another familiar form. This
is the purely separating equilibrium, in which different
signallers send distinct signals. With the signallers behav-
ing in this fashion, the donor has complete information
about the signaller's condition. A comparison of expected
inclusive fitnesses reveals that a needy donor will do best
if she transfers only to desperate signallers, whereas a
healthy donor will do best if she transfers to both
desperate and needy signallers, but not to healthy
signallers. We suppose that three possible signals are
available, with costs (here chosen arbitrarily for the pur-
pose of providing an example) of c1=0, c2=0.1 and
c3=0.2. Healthy signallers will send signal 1, and never
receive the resource from the donor. Needy signallers will
send signal 2, and receive the resource from healthy
donors but not from needy donors. Desperate signallers
will send signal 3, and receive the resource from both
types of donors. A comparison of expected inclusive fit-
nesses reveals that no signaller will benefit from altering
her signal, given that the donor strategy is held constant.
This equilibrium is depicted in Fig. 1b.

The third and fourth equilibria are of a type we have
not seen before; they are partially pooling equilibria in
which some types of signallers share the same signal. In
the third, there are two available signals, with costs c1=0
and c2=0.1 again chosen arbitrarily for this example.
Desperate and needy signallers are pooled together, each
sending signal 2, while healthy signallers send signal 1.
Needy donors do not benefit, on average, by transferring
in response to either signal, whereas healthy donors
benefit from transferring only in response to signal 2. The
possibility of transfer from healthy donors is sufficient to
maintain the more costly signal in desperate and needy
signallers; the healthy signaller, by contrast, has a higher
expected inclusive fitness by simply sending signal 1 and
receiving no transfer. This equilibrium is depicted in
Fig. 1c.

The fourth equilibrium is another pooling equilibrium,
again with two available signals, c1=0 and c2=0.2.
Here, the increased cost of signal 2 leads to a rearrange-
ment of which signallers send which signal. Needy and
healthy signallers are now pooled together, sending
signal 1, while desperate signallers send the high-cost
signal 2. Healthy donors maximize their expected
inclusive fitness by transferring in response to either
signal, whereas needy donors do best by transferring only
in response to signal 2. No signaller type can gain by send-
ing a different signal. The equilibrium is depicted in Fig. 1d.

At this point, we have described equilibria composed
of every possible partition of the three signaller qualities
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FIG. 1. Signalling equilibria in the discrete SPS game, for the setting described by Table 1. Squares represent desperate, needy, and healthy
signallers. Circles represent needy (N) and healthy (H) donors. Square brackets enclose equi-signalling classes. Arrows indicate resource transfer from
a donor type to a signaller class.

into signalling groups��with one exception. We have not
provided an example of one in which desperate and
healthy signallers send the same signal, while needy
signallers, with intermediate fitness, send some other
signal. In the next section, we prove that no such
equilibrium can exist.

3. MULTIPLE SIGNALLING
EQUILIBRIA WITH RELIABLE
SIGNALLING

Consider the general SPS game treated in Section 4 of
Signalling I. Two players, signaller and donor, with
coefficient of relatedness k, have initial fitnesses (in the

absence of the resource) of x and y respectively. Signaller
fitness is drawn from a distribution P on [0, 1], with
probability density p(x). Donor fitness is drawn inde-
pendently from another distribution Q also on [0, 1],
with probability density q( y). Each signaller sends some
signal s with a cost c(s) on the interval [0, 1], which is
paid in full by the signaller, whether or not the donor
transfers the resource. We define a pool of signallers to be
the set of all signallers sending a particular signal. We
then ask how the signallers can be partitioned into pools
such that the resulting signalling system is stable.

As the only property distinguishing different signallers
in this game is fitness, we can simply label the signallers
by their fitnesses. A signaller who has fitness x without
the resource will be called signaller x. Then the set of all
signallers is the interval [0, 1], and we can partition this
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interval into pools. As we will prove later, a partition of
the fitness interval into pools can be a signalling equi-
librium if and only if the split is contiguous, as defined
below.

Let us define a partial ordering on the pools of
signallers: if X1 and X2 are two distinct pools, we will say
that X1<X2 if all signallers in X1 have a lower fitness
than the signallers in X2 , i.e., for all x1 in X1 and x2 in X2

we have x1<x2 . Notice that there can be pools X1 and
X2 of signallers such that neither X1<X2 nor X2<X1 .
A partition of the signallers into pools is contiguous if for
every two distinct pools Xi and Xj in the partition, either
Xi<Xj or Xj<Xi .

Theorem 1. In an SPS game with a donor distribution
q( y) which is positive everywhere on [0, 1], a partition of
the signaller fitness interval into pools can have a signalling
equilibrium if and only if the partition is contiguous.

First we will show that the donors treat a member of
a pool as if her fitness is the average fitness of the
individuals in that pool.

Lemma 1. Let Xs be the pool of signallers sending
signal s. Then at a signalling equilibrium a donor with
fitness y will donate in response to this signal if and only if
y>1+kw*(s)&k, where w*(s) is the average fitness of
the signallers in Xs .

As in Signalling I, at a signalling equilibrium a donor
will donate if and only if her expected inclusive fitness
from doing so exceeds her expected inclusive fitness from
retaining the resource. This must hold for each signal
received. For a given signal s sent by the pool of signallers
Xs , this condition is

|
Xs

[ y+k] p(x) dx>|
Xs

[1+kx] p(x) dx (1)

or, equivalently,

k+ y>k
�Xs

xp(x) dx

�Xs
p(x) dx

+1. (2)

Define the average fitness of the signallers in Xs as
w*(s)#�Xs

xp(x) dx��Xs
p(x) dx. Then a donor with

fitness y will donate under guesswork if and only if
y>1+kw*(s)&k. A similar result is obtained by
Maynard Smith (1994). Additionally, this result recalls
the analysis in Section 4 of Signalling I, in which we
proved that in the completely pooling equilibrium
(referred to there as the ``no-signalling'' equilibrium), the

donor uses a criterion based on average signaller fitness
to determine whether to transfer or retain the resource.

Now we return to the proof of the theorem. Let X1 , X2

be two pools of signallers. The signallers in X1 send
signal 1, and those in X2 send signal 2. Let w*(1) and
w*(2) be the average fitnesses, and assume without loss
of generality that w*(1)�w*(2). Let the cost of signal 1
be c(1), and that of signal 2 be c(2). The system is at a
signalling equilibrium with respect to the signallers if and
only if the following two conditions hold. First, every
signaller x2 # X2 must be better off sending signal 2 than
sending signal 1.

|
1+kw*(1)&k

0
(x2+k) q( y) dy

+|
1

1+kw*(1)&k
(1+ky) q( y) dy&c(1)

�|
1+kw*(2)&k

0
(x2+k) q( y) dy

+|
1

1+kw*(2)&k
(1+ky) q( y) dy&c(2) (3)

i.e.,

|
1+kw*(2)&k

1+kw*(1)&k
(1+ky&x2&k) q( y) dy�c(1)&c(2)

(4)

for all x2 # X2 . Second, every signaller x1 # X1 must be
better off sending signal 1 than sending signal 2:

|
1+kw*(1)&k

1+kw*(2)&k
(1+ky&x1&k) q( y) dy�c(2)&c(1)

(5)

or

|
1+kw*(2)&k

1+kw*(1)&k
(1+ky&x1&k) q( y) dy�c(1)&c(2).

(6)

Therefore for all x1 # X1 , x2 # X2

|
1+kw*(2)&k

1+kw*(1)&k
(1+ky&x1&k) q( y) dy

�|
1+kw*(2)&k

1+kw*(1)&k
(1+ky&x2&k) q( y) dy. (7)
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From this it follows that x2�x1 , given that integral of
q( y) is positive over the interval [1+kw*(1)&k,
1+kw*(2)&k]. Since x1 can be anything in X1 and x2

can be anything in x2 , by definition, X1<X2 . As this
holds for every pair of pools in the partition, the partition
must be contiguous. When inf (X2)=sup(X1) (the
smallest number bigger than all X1 is equal to the biggest
number smaller than all X2) we have, by the sandwich
principle

|
1+kw*(2)&k

1+kw*(1)&k
(1+ky&sup(X1)&k) q( y) dy

=c(1)&c(2). (8)

Now we prove the converse: if a partition is contiguous
then there exists a signalling equilibrium over this parti-
tion. Let ĉ be a cost function defined such that, for every
X1 and X2 for which X2>X1 , the following two relations
hold:

|
1+kw*(2)&k

1+kw*(1)&k
(1+ky&sup(X1)&k) q( y) dy�ĉ(1)&ĉ(2)

(9)

and

|
1+kw*(2)&k

1+kw*(1)&k
(1+ky&inf(X1)&k) q( y) dy� ĉ(1)&ĉ(2).

(10)

Using this cost function ĉ, Eqs. (4) and (6) will hold, and
consequently the system will be at a signalling equi-
librium. To find cost function such that this relation
holds, we use Eq. (8). In the appendix, we provide
two examples of pooling equilibria for the SPS game,
constructed using the results from this section.

4. ERROR-PRONE SIGNALLING

4.1. The Existence of Multiple Signalling
Equilibria

In this subsection we will analyse the general SPS
game (described in Section 3) where there is imperfect
information transfer between the signaller and the donor.
In this case, the signal that is received is not necessarily
identical to the signal that was sent. Rather, the signal
is conveyed through a medium which determines
probabilistically which signal will be received.

To simplify the analysis, we introduce new notation.
Let S be the set of all signals sent and R be the set of all
signals received. M(s, r) is the probability of receiving
signal r when signal s was sent. The pool of signallers who
send signal s will be marked by Xs . Again, p(x) is the
probability density of signallers, and q( y) the probability
density of donors, where x and y index signaller and
donor by fitness, as before.

We will prove a theorem very similar to the theorem in
Section 3. As before, we begin with a lemma.

Lemma 2. At a signalling equilibrium a donor with
fitness y will respond to signal r by donating her resource
if and only if y>1+kw**(r)&k, where w**(r) is the
average fitness of the signaller conditional on the donor
having received signal r.

The probability that signal s will be sent is

P(s sent)=|
Xs

p(x) dx. (11)

The probability that the donor will receive signal r is

P(r received)= :
s # S

P(s sent) M(s, r). (12)

Having received a signal r, the conditional probability
that it was sent by a signaller in Xs is given by the
expression below. Notice that since M can be viewed as
a conditional probability matrix, this is simply Bayes'
rule:

P(s sent | r received)=
P(s sent) M(s, r)

P(r received)
. (13)

If a donor of fitness y receives signal r, and transfers the
resource, her average inclusive fitness will be

:
s # S

P(s | r)
�Xs

( y+k) p(x) dx

�Xs
p(x) dx

= :
s # S

P(s | r)( y+k)= y+k. (14)

If she does not transfer the resource, her average inclusive
fitness will be given by the following expression, where
w*(s) is the average fitness of signallers sending signal s.

:
s # S

P(s | r)
�Xs

(1+kx) p(x) dx

P(s sent)
= :

s # S

P(s | r)(1+kw*(s))

(15)
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Therefore she will transfer the resource when the follow-
ing condition holds:

y+k�1+ :
s # S

P(s | r)(kw*(s)). (16)

We can define the w**(r) as the mean fitness of a sender
whose signal is perceived as r:

w**(r)# :
s # S

P(s | r) w*(s). (17)

This provides the following condition for the donor to
transfer the resource when she receives signal r:

y�1+kw**(r)&k. (18)

Theorem 2. In the general SPS game with signalling
error, where the donor distribution q( y) is positive
everywhere on [0, 1], a partition of the signaller fitness
interval into pools can have a signalling equilibrium only if
the partition is contiguous.

A signaller who has fitness without the resource of x
and sends signal s with cost c(s), has expected inclusive
fitness

:
r # R

M(s, r) \|
1+kw**(r)&k

0
(x+k) q( y) dy

+|
1

1+kw**(r)&k
(1+ky) q( y) dy+&c(s). (19)

Now we introduce the following notation: the proportion
of donors who will not transfer the resource when they
receive signal r will be labelled Qn(r), and is

Qn(r)=|
1+kw**(r)&k

0
q( y) dy. (20)

The proportion of donors who will transfer the resource
when they receive signal r will be Qt(r). The average fit-
ness of a donor who transfers the resource in response to
signal r will be vt*(r), and is

vt*(r)=
�1

1+kw**(r)&k yq( y) dy
Qt(r)

. (21)

Then we can rewrite Eq. (19) for expected signaller
fitness as

:
r # R

M(s, r)((x+k) Qn(r)+(1+kvt*(r)) Qt(r))&c(s).

(22)

Let X1 and X2 be two pools of signallers sending
signals 1 and 2 respectively. For all signallers x1 in X1 it
has to be true that

:
r # R

M(1, r)((x1+k) Qn(r)+(1+kvt*(r)) Qt(r))&c(1)

� :
r # R

M(2, r)((x1+k) Qn(r)

+(1+kvt*(r)) Qt(r))&c(2) (23)

i.e.,

(x1+k) :
r # R

(M(1, r)&M(2, r)) Qn(r)

+ :
r # R

(M(1, r)&M(2, r))(1+kvt*(r)) Qt(r)

�c(1)&c(2). (24)

We have not assumed anything about X1 and X2 , there-
fore we can assume without loss of generality that

:
r # R

M(1, r) Qn(r)� :
r # R

M(2, r) Qn(r). (25)

For expression (24) to hold for all x1 # X1 , we require
that

(inf(X1)+k) :
r # R

(M(1, r)&M(2, r)) Qn(r)

+ :
r # R

(M(1, r)&M(2, r))(1+kvt*(r)) Qt(r)

�c(1)&c(2). (26)

Similarly for all x2 # X2 we require

(x2+k) :
r # R

(M(2, r)&M(1, r)) Qn(r)

+ :
r # R

(M(2, r)&M(1, r))(1+kvt*(r)) Qt(r)

�c(2)&c(1), (27)
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and consequently

(sup(X2)+k) :
r # R

(M(1, r)&M(2, r)) Qn(r)

+ :
r # R

(M(1, r)&M(2, r))(1+kvt*(r)) Qt(r)

�c(1)&c(2). (28)

Therefore inf(X1)�sup(X2) and X1>X2 ; this means
that, as in Section 3, each pool will be contiguous in fit-
ness. Here, however, we have the additional requirement
that for every two (distinct and contiguous) pools of
signallers, inequality (25) holds if and only if X1>X2 , i.e.,
when X1>X2 then �r # R M(1, r) Qn(r)��r # R M(2, r)
Qn(r), and when X2>X1 then �r # R M(2, r) Qn(r)�
�r # R M(1, r) Qn(r).

We summarize these results in the following:

Theorem 3. In a general SPS game with signalling
error, for a medium M and donor distribution q( y) which
is positive everywhere on [0, 1], a given partition of the
signallers into pools can have a signalling equilibrium if
and only if (1) the partition is contiguous and (2) for
any two distinct and contiguous pools X1 and X2 of
signallers sending signals 1 and 2, when X1>X2 then
�r # R M(1, r) Qn(r) � �r # R M(2, r) Qn(r), and when
X2>X1 then �r # R M(1, r) Qn(r)��r # R M(2, r) Qn(r),
where Qn(r) is the probability that a donor will not respond
to signal r at the equilibrium.

This condition requires that the signalling medium M
will be orderly in the following sense. Consider any two
pools meeting the appropriate contiguity condition (i.e.,
with all signallers in one pool having lower fitness than
any signaller in the other pool). Given these two pools,
donors must be more likely to transfer in response to the
signal sent by the signallers in the lower-quality pool. By
contrast, it is trivial to construct a medium M for which
contiguity does not imply the existance of a stable
signalling equilibrium.

4.2. An Example of Error-Prone Signalling

The formulae developed in the previous subsection
allow us to determine analytically the equilibrium signal
costs and player strategies, for any particular setting of
the SPS game with error in signal transmission. Below,
we provide a simple example using Johnstone and
Grafen's (1992) continuous SPS game. This version of
the game is equivalent to the general SPS game of
Section 3, for a specific pair of donor and signaller fitness
distributions. The donor and signaller, related by k, have

fitnesses x and y in the absence of the resource, where x
and y are drawn independently from a uniform distribu-
tion on [0, 1]. The signaller can choose a signal with cost
c from the interval [0, 1], and the donor decides whether
to transfer or retain the resource based on the values of
x and c.

In this example, we postulate a particular pair of
signaller and donor strategies and they solve for the signal
cost which, together with these strategies, constitutes a
signalling equilibrium for the setting described above.

Consider an equilibrium in which there are only two
distinct signals, labelled 1 and 2. We postulate a signaller
strategy as follows: signallers in the region (1�2, 1] send
signal 1, with cost 0, while signallers in the region
[0, 1�2] send signal 2 with some cost c. Since there are
two signals, the medium M can be represented by a two-
by-two matrix. Here, we will consider a medium that
transmits the signals faithfully with probability 0.9.

M=\0.9
0.1

0.1
0.9+ (29)

Since signallers are uniformly distributed on [0, 1]
and the partitions are of equal size, each signal will be
sent with probability 1�2. Moreover, transmission error
as represented by M occurs symmetrically, so the prob-
ability of receiving signal 1 is 1�2, as is the probability of
receiving signal 2. The conditional probability that signal
i was sent given that signal j was received is then 0.9 when
i= j, and 0.1 otherwise.

As a consequence of the uniform signaller distribution,
the average fitness of signallers sending signal 1, w*(1),
will be 0.75, while the average fitness of signallers sending
signal 2, w*(2), will be 0.25. Using Eq. (17), the average
fitness of signallers who send signals perceived as
signals 1 and 2 and will be w**(1)=0.7 and w**(2)=0.3
respectively. Consequently, Eq. (18) reveals that at equi-
librium, a donor will transfer in response to signal 1 if her
fitness exceeds 0.85 and will transfer in response to
signal 2 if her fitness exceeds 0.65. From Eq. (21), the
mean fitnesses of donors transferring in response to
signals 1 and 2 are then 0.93 and 0.83 respectively.

Using Eq. (22), we compute the expected inclusive fit-
ness of a signaller with initial fitness x to be 0.66+0.83x
if she sends signal 1, and to 0.80+0.67x&c if she sends
signal 2. Equation (24) then returns our desired result:
this particular combination of strategies and costs will be
a stable signalling equilibrium when c=0.06.

In general, as the fidelity of the medium decreases, the
minimum cost of the stable equilibrium signals also
decrease. In the example above, the signal cost necessary
for this partition to be an equilibrium would be c=0.09
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in the case of an error-free medium. In Signalling I, we
demonstrate that some stable signalling equilibria are
too costly to be worthwhile for signaller or donor; note
that it is thus possible to have a system in which, with the
signaller strategy held constant, the donor always prefers
higher fidelity of the medium, and yet both signaller and
donor would benefit from moving to a new equilibrium
in a medium with lower fidelity.

5. THE EFFECT OF RARE SIGNALLER
TYPES ON SIGNAL COST

At the conclusion of Signalling I, we asked a question
which seemed quite disturbing when one considered
only separating equilibria. At a separating equilibrium
the signal costs depend only on the signaller types
present, and not on the frequencies of these types (see
Signalling I). Consequently, the addition of even a single
signaller of a novel type can dramatically increase the
signal cost for all other signallers, because they all need
to distinguish themselves from the new signaller. Could
an equilibrium not be reached, we asked, in which the
newcomer ``poses'' as one of the other types, thereby
avoiding the increase in signal cost?

In Section 3, we develop the framework necessary to
answer this question, proving that signalling equilibria
can take the pooling form. Therefore, it is entirely
possible that the scenario described above could result in
a pooling equilibrium instead of a fully separating equi-
libria. In this pooling equilibrium, the newcomer would
be posing as one of the more common signallers.
Moreover, the signal costs at the separating equilibrium
could easily be so high that all signallers would be better
off in the pooling equilibrium than in the separating
equilibrium.

This can be illustrated using the discrete SPS game
described in Section 2. Before doing so, it is useful to rein-
troduce the concept of the least costly believable signal,
used extensively in Signalling I in treating separating
equilibria. The least costly believable signal, ĉ, of a
particular state is defined as the least costly signal which
is too costly to be sent by a signaller in a healthier state.

Consider the discrete setting described in Section 2,
with one modification. Only desperate signallers with
initial fitness of 0.3 and needy signallers with initial
fitness of 0.6 are present, each in the same frequency.
There are no healthy signallers. The donors, as before,
are either needy, with initial fitness of 0.7, or healthy
with initial fitness of 0.9, in equal frequencies. Since the
needy signallers are currently the best-off, we assume that

they can signal their state with cost 0. Moreover, notice
that the healthy donors will benefit (on average) from
transferring to both desperate and needy signallers. Con-
sequently the signal serves only to influence the behavior
of the needy donors, who should ideally transfer only to
desperate signallers. Adapting slightly the formula for ĉ
from Signalling I, the least costly believable signal for the
desperate signallers is given by the following expression,
where k is the coefficient of relatedness between signaller
and donor:

ĉ=(1&0.6)�2&0.3k�2=0.2&0.15k. (30)

When desperate signallers send this signal, and needy
signallers send the other, zero-cost signal, the signalling
equilibrium is completely separating, as depicted in
Fig. 2a.

Suppose now that a single individual of a new type, a
``healthy'' signaller with initial fitness 0.9, is introduced. If
the new signalling equilibrium is to remain purely
separating, by the definition of least costly believable
signal, the needy signallers must now send a signal of at
least c1@=0.05&0.05k. Similarly, the desperate signallers
must send a signal of at least c2@=ĉ+c1@=0.25&0.2k to
distinguish themselves from the needy signallers. The
resulting equilibrium is depilated in Fig. 2b.

Thus, in order to distinguish the needy signallers from
this single healthy arrival, all signallers other than the
healthy individual must pay an additional amount
0.05(1&k). Since donors are related to these individuals
by k, this change costs them an additional amount
0.05k(1&k) whenever they are paired with a desperate
or needy signaller.

What is gained by distinguishing needy from healthy
signallers? Absolutely nothing, from the standpoint of
the signallers. Suppose that instead of distinguishing
themselves, the needy and healthy signallers both send
the same zero-cost signal. Desperate signallers can send
the same signal as before the arrival of the healthy
individual and thus distinguish themselves from the
others. This is the pooling equilibrium depicted in Fig. 2c.
Notice that at this equilibrium, both the needy and the
desperate signallers fare exactly as before the arrival of
the healthy individual; needy signallers enjoy transfer
from the healthy donors, and desperate signallers enjoy
transfer from both needy and healthy donors.

Donors, likewise, gain little from being able to dis-
tinguish needy signallers from the lone healthy signaller.
The only advantage from their perspective is that healthy
donors can avoid transfer to the lone healthy signaller.
This benefit is vanishingly small in large populations and
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FIG. 2. Signalling equilibria in the discrete SPS game, for the setting described in Section 5. Squares represent desperate, needy, and healthy
signallers. Circles represent needy (N) and healthy (H) donors. Square brackets enclose signalling pools. Arrows indicate resource transfer from a
donor type to a given pool.

does not compensate for the inclusive-fitness cost of the
increased signal expenses.

Clearly, both signallers and donors will do better if
they behave as suggested at the end of Signalling I: a
signalling equilibrium should be achieved in which
healthy individual ``poses'' as a needy individual. All
signallers and all donors benefit from this response to the
healthy individual's arrival.

Here, we have an example in which a pooling equi-
librium is preferable from the standpoint of all signallers
to the separating equilibrium. One can ask when, in
general, the signallers in one pool do better at an
equilibrium in which they distinguish themselves by
sending two different signals. We provide an answer to
this question in the following section.

6. WHEN SHOULD ONE POOL SPLIT
TO FORM TWO?

In this paper, we show that a single signalling setting
allows multiple signalling equilibria. In Signalling I we
demonstrated that in some cases the no-signalling equi-
librium, in which all signallers send the same signal, gives
a higher average payoff for both signaller and donor than
the fully separating equilibrium in which different
signallers send different signals. It is therefore natural to
ask the following question: Which of the different possible
signalling equilibria is optimal? Which partitioning of the
signallers will yield the highest average payoff?

A full analysis of this problem is beyond the scope of
the current paper; the problem is treated further in
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Bergstrom and Lachmann (1998). Here, we restrict our
analysis to the question of whether moving from an equi-
librium with a single pool of signallers to a different
equilibrium with this pool split into two, will give an
advantage. This question is addressed without regard to
the dynamics by which the system moves toward a par-
ticular equilibrium.

Consider the generalized SPS game treated in
Section 3, with signaller quality drawn with a probability
density function p(x) and donor quality drawn with
probability density q( y). Starting with the completely
pooling equilibrium, we ask which division of the
signallers into two distinct pools will give the biggest
benefit. As we show in Section 3, the cost paid for the
signal when the boundary dividing the two pools is
located at x~ is

|
1+kw(2)*&k

1+kw(1)*&k
(1+ky&x~ &k) q( y) dy=c(1)&c(2).

(31)

Here w(1)* is the average fitness of the signallers in the
pool with fitnesses in [0, x~ ], sending the first signal with
cost c(1), and w(2)* is the average fitness of the signallers
in the pool (x~ , 1], sending the second signal with cost
c(2). This cost is paid by all signallers sending the first
signal, so the average cost paid by each signaller is

|
x~

0
p(x) |

1+kw(2)*&k

1+kw(1)*&k
(1+ky&x~ &k) q( y) dy dx+c(2).

(32)

The difference in average fitness of the signallers before
and after dividing into two pools is

|
w*

0
p(x) |

1+kw*&k

1&kw(1)*&k
(k+x&ky&1) q( y) dy dx

+|
1

w*
p(x) |

1+kw(2)*&k

1+kw*&k
(ky+1&k&x) q( y) dy dx.

(33)

Here w* is the average fitness of all signallers (prior to
the division). Adding these two terms and simplifying, we
get

|
w*

0
(x&x~ ) p(x) dx |

1+kw*&k

1+kw(1)*&k
q( y) dy

+|
1

w*
(x&x~ ) p(x) dx |

1+kw(2)*&k

1+kw*&k
q( y) dy

+|
1+kw(2)*&k

1+kw*&k
(1+ky&x~ &k) q( y) dy. (34)

By way of an example, we use these equations to
examine the continuous SPS game as described by
Johnstone and Grafen (1992) and detailed here in
Section 4. In Fig. 3 we see both the fitness advantage
gained by signalling, and the cost of signalling for this
setting. One can see that the maximum advantage will
occur when the signal has cost 0.

In this setting, the value of the cost function described
by Eq. (32) drops below 0 for some parts of its domain.
How are we to interpret negative signal cost? Recall that
the cost function (31) describes not the absolute cost but
the difference between two signal costs. Consequently,
the average signal cost graphed in Fig. 3 is actually based
on the difference between the cost of signal 1 and signal 2.
When this average is positive, signal 1 costs more than
signal 2; we assume that signal 2 has zero cost. When it is
negative, signal 2 costs more than signal 1; we assume
that signal 1 has zero cost. This is interesting, for at these
equilibria the high-quality signallers send a costly signal
indicating that they do not want the resource. The low
quality signallers send a free signal indicating that they
do want the resource.

This illustrates the fact that stable costly signalling
does not require a conflict of interest between signaller
and signal receiver. Above, we noticed that for certain
partitions of the signallers into two pools, the high
quality signallers have to send the more costly signal, to
indicate that they do not want to get the resource. Here,
it is the cost of the signal that makes the system stable.
Signallers who are just under the division point would
also enjoy higher inclusive fitness were the donor to
simply retain the resource. However, because of the cost
of signalling high-quality, they do better by signalling
with the low-quality pool and consequently will not
switch to signal that they are of the high-quality type.

It is illuminating to consider the case of k=1. Here,
there is no conflict of interest, and in the separating equi-
librium signal cost is 0. For a pooling equilibrium,
however, there can still be a signal cost. In a pooling
equilibrium signallers do not signal their exact quality,
but only partial information about it, namely, to which
pool they belong. This admits the possibility that
signaller and donor might both benefit from a ``white lie.''
A signaller might be in one pool, but deceiving and send-
ing the signal of another pool might actually provide the
donor with a ``better'' estimate of her quality. In this case
there would be an incentive for the signaller to deceive,
and a signal cost would be required to maintain honesty.

For example, suppose that there are two pools, with a
split at 0.9. Donors then treat signaller as either having
fitness 0.45, or 0.95. A signaller in the first pool, with fit-
ness 0.8, is treated as having fitness 0.45 but would rather

156 Lachmann and Bergstrom



FIG. 3. The advantage of splitting the signallers at fitness x~ , the total cost of the signal incurred by this partition, and the total difference between
the average fitness of the signallers without a partition and with a partition. It is clear that the biggest fitness gain from the split arises when the
partition is set such that the signal has cost 0. The curves were plotted for k=0.5.

be treated as having fitness 0.95. Consequently this
signaller would benefit from ``deceiving'' and sending the
signal of the healthier pool. For this to be an equilibrium,
this ``healthy'' signal has to be costly.

In general, it might seem unlikely that a system with
k=1 would actually settle on a costly pooling equi-
librium such as this, for reasons of efficiency. However,
consider the case of signalling inside a multicellular body,
with only two distinct signals available. These two signals
will necessarily have associated physiological costs, and
thus we would expect the system to settle on the appro-
priate costly pooling equilibrium for these particular
costs and k=1. This point generalizes to an arbitrary
number of signals.

7. DISCUSSION

In this paper, we have examined the nature of signall-
ing equilibria in communication among relatives. Using
the SPS game as a model, we have shown that when
signalling is error-free, any contiguous partition of
signaller qualities into pools has a stable signalling
equilibrium. When signals are transferred through an
error-prone medium, again signal partitions must be
contiguous in order to form stable equilibria. In addition,
a second condition requiring a kind of ``regularity'' of the
signal medium must also be met; this condition is given
in Theorem 3.

In deriving these results, as in the associated numerical
illustrations, we postulate a particular partition of sign-
aller qualities into pools and then compute the signal
costs required to enforce a stable signalling equilibrium

with signallers distributed into precisely these pools.
There is no mathematical reason why the reverse
approach could not be used; one could begin with a
set of known signal costs and compute the equilibrium
partition of signallers into signalling classes given this
particular set of signal costs. Such an approach might
prove useful in evaluating a system with measurable
signal costs.

Qualitative Conclusions

We have at least four conclusions of general interest.
First, pooling equilibria, in which signallers of different
qualities send identical signals, are possible in costly
signalling games. This is true for both discrete and con-
tinuous games, and whether or not there is error in signal
transmission. Consequently, it is possible for signallers to
provide only partial information to the donors at a
signalling equilibrium.

Second, since pooling equilibria are possible, we find
that signalling equilibria are far more numerous than
previously thought. A setting is not limited to a single
equilibrium, but rather allows many signalling equilibria.
As we have demonstrated, this holds whether the game is
discrete or continuous, and whether or not there is error
in signal transmission.

Third, even when looking beyond separating equi-
libria, the general conclusions of Grafen (1990a) appear
to hold: though there are multiple signalling equilibria,
and different signallers may send the same signals, the
partition of signallers into equi-signalling classes must
always be contiguous. There can never be a case in which
a high quality signaller gives the same signal as a low
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quality signaller, while a different signal is sent by an
intermediate signaller. Consequently, it is reasonable to
conclude that while the signals may convey less than
complete information about signaller quality, they
remain essentially honest.

Fourth, for pooling equilibria in the SPS game, the
signal cost may be paid by the signallers who do not wish
to receive the resource. This highlights the fact that with
pooling equilibria, signal cost serves to maintain pool
boundaries. Consequently, conflict of interest between
signaller and receiver is not required for stable costly
signalling.

Relation to Previous Models

Given the abundance of pooling equilibria in con-
tinuous signalling models, why have the previous models
of biological signalling treated only the single separating
equilibrium allowed by each setting? The answer is, in
part, methodological. In the analysis of continuous
signalling games, one can proceed by solving differential
equations to determine optimal signaller and donor
strategies, or, as we do in this paper, one can solve
for the signal costs required to make an equilibrium
stable. For the former approach, one must assume that
the signaller's strategy is a differentiable function; this
excludes all non-continuous strategies. All equilibria
other than the simplest single-signal equilibrium and
fully separating equilibrium feature non-continuous
signalling strategies and consequently will be overlooked
by this approach.

Previous models of signalling among relatives (Godfray
1991; Johnstone and Grafen 1992a) take the differential
equation approach, and therefore cannot consider pool-
ing equilibria within their respective frameworks. In
his original formulation of signalling equilibria, Grafen
(1990a) takes a similar approach to provide what he
considers to be necessary conditions for the existence of
a stable signalling equilibrium. However, he assumes that
the optimal advertising level is strictly increasing in
signaller quality. This assumption is not necessary for a
signalling equilibrium to exist. Under our assumptions
about the allowable form of the advertising strategy, the
necessary conditions for existence of signalling equi-
librium are more general, and thus we are able to reveal
a set of additional signalling equilibria.

Response to Novel Signals

One possible criticism of the model presented in the
body of this paper is that in each equilibrium we allow

signallers to send only signals chosen from a defined set,
and the donors to respond only to these signals. What
happens when other, out-of-equilibrium signals are sent?
What happens when for each pair of signals with different
costs, the signallers can also send another signal, with an
intermediate cost? Can pooling still be stable in such a
case?

This depends on how the donors respond to signals
which are not sent at the pooling ``equilibrium.'' Certain
donor strategies (which specify the behavior of the
donor, given the donor's condition and the signal sent)
will allow a given pooling equilibrium to remain stable,
while others will destabilize the pooling equilibrium.
Thus if we allow intermediate signals, we may have a
more restrictive set of necessary conditions for stable
equilibrium, but this will not rule out the possibility of
stable pooling equilibria. While of considerable interest,
characterization of these conditions is beyond the scope
of this paper.

Furthermore, it becomes crucial when examining these
issues to distinguish the signal itself from the signal cost.
Notice that the donor directly perceives the former, not
the latter. Only when these are one-to-one is it even
possible to infer the cost of the signal. Historically,
Grafen (1990a) mentions this distinction briefly, but he
then proceeds to examine the simplified case in which
signals and their costs are indeed one-to-one. Most
subsequent signalling analyses follow his model in this
respect.

The simplification of identifying signal with signal cost
has the undesirable side-effect that donors are not able to
distinguish different signals which have the same cost, an
artifact which certainly does not hold in nature. Maynard
Smith (1994) provides an example which highlights this
problem. He demonstrates that in the SPS game, there
may exist signalling equilibria in which at least two dis-
tinct signals have the same cost. (This cost is zero, in his
example.) Whenever this is the case, the signal clearly
does not map one-to-one to signal cost and thus the two
cannot be equated.

Consequently, the critique that equilibrium is defined
only with respect to a certain set of ``recognized'' signals
represent a valid criticism of the entire body of signalling
theory literature following Grafen (1990a). This
literature does not, at equilibrium, make predictions
about how receivers will respond to novel signals
and thus demonstrates stability only in a certain nar-
row sense. As can be seen from the discussion above,
this problem is not a consequence of allowing pooling
equilibria; the purely separating equilibrium tra-
ditionally characterized suffers equally from this weak-
ness.

158 Lachmann and Bergstrom



Other Remarks

The models in this paper deal strictly with the case of
signalling among relatives as modelled by the SPS game.
The general results, however, regarding the prevalence of
multiple signalling equilibria are by no means restricted
to this particular model of signalling. Similar results will
hold for signalling among non-relatives as well, whether
in the context of mate selection, predator-prey signalling,
or other costly signalling scenarios.

Finally, what implications do the results of this paper
have for empirical study of signalling systems? First of
all, they suggest that we should not be at all surprised
to discover ``pooling'' equilibria in nature. Moreover,
while signaller error may also allow pooling instead of
separating (Grafen and Johnstone 1993; Johnstone 1994),
error is not necessary in order to explain the stability of
a pooling equilibrium. Second, the potential for the
same signalling system to evolve a range of distinct
signalling equilibria suggests that it may be possible for
signalling systems to be remarkably varied with regard to
the partitions of signallers into pools. Two very similar
signalling settings, or even two identical signalling set-
tings, could end up with very different partition structures.
Of course, which particular equilibrium will be reached is
another question entirely, a question which cannot be
addressed without also considering the dynamics of signal
evolution.

APPENDIX: STABILITY OF MULTIPLE
EQUILIBRIA IN THE CONTINUOUS SIR
PHILIP SIDNEY GAME

The continuous SPS game, as described by Johnstone
and Grafen (1992) (detailed here in Section 4) provides a
useful illustration of the potential for multiple signalling
equilibria.

We prove in Theorem 1 that any contiguous partition
of signallers into pools can be a stable signalling equi-
librium. There are an infinite number of such partitions,
and consequently an infinite number of distinct signalling
equilibria are possible in this game. Johnstone and
Grafen describe one of these, the completely separating
equilibrium in which the signaller of fitness y sends a
signal with cost 1�2 k(1&k2)(1& y)2, and the donor of
fitness x transfers if this signal exceeds 1�2(1�k&k)
(1&x)2. Under this system, the donor is given complete
information and consequently transfer occurs whenever
x>1&k+ky. In Signalling I, we compared this equi-
librium to the opposite end of the separating�pooling
spectrum, the ``no-signalling'' or completely pooling

equilibrium. At this equilibrium, all signallers send a
signal with cost 0 and donors transfer if x>1&k�2.
Below, we detail two more elaborate pooling equilibria.

Example 1. A Partition with Two Equi-signalling
Classes. First, consider a partition of the unit interval
into two regions, X1=(a, 1] and X2=[0, a]. Signallers
in region X1 send signal 1 with cost 0. Signallers in region
X2 send signal 2 with cost c=k�2(1&a+k2(a�2&3�4)).
(In Section 6 we discuss the case in which this expression
is negative.) Below, we demonstrate the manner in which
c is derived to ensure that this is a stable signalling
equilibrium.

Let the cost of sending signal 1 be 0. The cost c of
sending signal 2 required to ensure honest signalling is
the cost that makes it worthwhile for only the signallers
of fitness less than a to send signal 2. Let p̂ be the prob-
ability of causing a donor to begin transferring by
sending 2 instead of 1 and x̂ be the mean fitness of the
donors who are thus induced to alter their behavior. We
can compute values of p̂ and x̂ using the fact that at equi-
librium, all donors respond to a given signal as if it were
sent by an individual of the average fitness in that pool.
At this equilibrium, there are two signals: signal 2 sent by
individuals with mean fitness a�2, and signal 1 sent by
individuals with mean fitness (1+a)�2. Donors respond
if x>1&k+ky, so a fraction p̂=k((1+a)�2&a�2)=
k�2 of the donors will transfer in response to 2 but not in
response to 1. These switching donors will have mean
fitness x̂=1&3k�4&ka�2. Since c is equal to the prob-
ability of causing a donor to switch times the change in
inclusive fitness resulting from such a switch, we can
write

c= p̂((1&a)&k(1&x̂))) (35)

Since p̂=k�2 and x̂=1&3k�4&ka�2, we can write ĉ as

c=
k
2 \1&a+k2 \a

2
&

3
4++ (36)

This signal cost has been defined precisely so that
signallers with fitnesses in [0, a] will send signal 2, and
signallers with fitnesses in (a, 1] will send signal 1.
Donors will maximize fitness by treating each individual
in a given pool as if she were the mean signaller in that
pool. Consequently a donor will transfer in response to 2
only if her own fitness exceeds 1+k&ka�2, while she will
transfer in response to 1 only if her own fitness exceeds
1&k+k(1+a)�2. Neither donor nor signaller can
benefit from altering this strategy, and thus we have a
stable signalling equilibrium for the continuous SPS
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game in which signallers partition themselves into two
different pools

Example 2. Zeno's Partition. A pooling equilibrium
does not need to be partitioned into a finite number of
signal classes. Consider the following partition. Signallers
with fitnesses in X1=(1�2, 1] send signal 1, signallers in
X2=(1�4, 1�2] send signal 2, signallers in X3=(1�8, 1�4]
send 3, signallers in Xi=((1�2) i, (1�2) i&1] send signal i,
and so on. We call this ``Zeno's partition.'' Like the
separating signalling equilibrium detailed by Johnstone
and Grafen, Zeno's partition offers an infinite array of
signals and can be a stable signalling equilibrium. In
Zeno's partition, however, each signal is shared by
signallers spanning a range of signaller fitnesses. As in
the previous case, donors respond to each signal as if it
were sent by the average signaller within the appropriate
interval.

Using the logic similar to that of the previous example,
we can compute the stable signal costs ci of signalling Si .
Again we let the highest-fitness individuals signal for free,

setting c1=0, and notice that pi@=3k�2i+1 and xi@=
1&k+9k�2i+2. To be stable, the cost of signalling i must
be such that only those with fitness below 1�2i&1 benefit
from sending a signal at least this high. Consequently, the
cost of sending signal ci is equal to ci&1 plus the gain, to
an individual at the boundary between Ri and Ri&1 , of
sending i instead of i&1. Defining c1=0, this can be
written as

ci=ci&1+ pi@k \1&
1

2i&1+&k(1&xi@) (37)

Substituting for pi@ and xi@ , we arrive at the following
recursive expression for signal cost:

c1=0
(38)

ci=ci&1+
3k

2i+1 \1&
1

2i&1&k2+
9k2

2i+2+ .
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